Resolution of the bi-objective optimization problem for the dispatch of hydroelectric plants under conditions of low inflow using the NSGA II algorithm
Journal: Region - Water Conservancy DOI: 10.32629/rwc.v8i2.3797
Abstract
Among the consequences of climate change are the increase in temperature and changes in rainfall patterns that bring longer periods of drought. This creates limitations in the management of hydroelectric plant reservoirs, restricting in some cases the amount of electricity generated. The objective of this research is to solve the multi-objective optimization problem that seeks to minimize the electric power production of hydroelectric plants with low inflow and, at the same time, to minimize the electric rationing due to this low production. Since the objectives are opposed to each other, it was necessary to apply methodologies for solving multiobjective optimization problems, including genetic algorithms. The mathematical model was built considering the operating conditions of the reservoirs of the hydroelectric plants under study, taking into account their minimum operating levels, which are included in the model constraints. The non-dominated sorting genetic algorithm II was used to obtain the Pareto front, which resulted in a total of 78 non-dominated solutions, which were useful to manage the reservoirs considered, at the time of maximum demand. In short, it is recommended to use other multiobjective optimization algorithms for comparison purposes, selecting the appropriate indicators to evaluate the performance of each algorithm used, in addition to incorporating monetary and environmental cost restrictions to the model.
Keywords
climate change; Pareto front; electricity generation; NSGA; electricity rationing
Full Text
PDF - Viewed/Downloaded: 0 TimesReferences
[1] Agencia Internacional de Energía. (2021). Climate Impacts on Latin American Hydropower. France: IEA.
[2] Ahmad, M., Beddu, S., Itam, Z., & Ismail Alanimi, F. (2019). State of the Art Compendium of Macro and Micro Energies. Advances in Science and Technology Research Journal, 88-109. https://doi.org/10.12913/22998624/103425.
[3] Al Shidhani, T., Ioannou, A., & Falcone, G. (2020). Multi-Objective Optimisation for Power System Planning Integrating Sustainability Indicators. MDPI Energies, https://doi.org/10.3390/en13092199.
[4] Coello Coello, C., Lamont, G., & Van Veldhuizen, D. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. New York, USA: Springer.
[5] Emmerich, M., & Deutz, A. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural Computing, 585-609. https://doi.org/10.1007/s11047-018-9685-y.
[6] Gujarati, D., & Porter, D. (2010). Econometría. México, D. F.: McGraw-Hill/Interamericana Editores, S.A. DE C.V.
[7] Hojjati, A., Monadi, M., Faridhosseini, A., & Mohammadi, M. (2018). Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. Journal of Hydrology and Hydromechanics, 323-329. https://doi.org/10.2478/johh-2018-0006.
[8] Huang, G., Tan, M., Meng, Z., Yan, J., Chen, J., & Qu, Q. (2023). Hydropower Scheduling with Power Load Prediction: Optimizing Energy Efficiency and Navigation Performance. Research Square, https://doi.org/10.21203/rs.3.rs-2959078/v1.
[9] Hussain, A., & Kim, H.-M. (2021). Evaluation of Multi-Objective Optimization Techniques for Resilience Enhancement of Electric Vehicles. MDPI Electronics, https://doi.org/10.3390/electronics10233030.
[10] Jena, C., Guerrero, J., Abusorrah, A., & Al-Turk, Y. (2022). Multi-Objective Generation Scheduling of Hydro-Thermal System Incorporating Energy Storage With Demand Side Management Considering Renewable Energy Uncertainties. IEEE Access, 52343-52357. https://doi.org/10.1109/ACCESS.2022.3172500.
[11] Karami, F., & Dariane, A. (2022). A review and evaluation of multi and many-objective optimization: Methods and algorithms. Global Journey of Ecology, 104-119. https://dx.doi.org/10.17352/gje.000070.
[12] Li, F.-F., & Qiu, J. (2015). Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power. Energies, 6963-6976. https://doi.org/10.3390/en8076962.
[13] López, M. (11 de Febrero de 2024). ¿Qué pasa con los fenómenos de El Niño y La Niña y cómo esto afecta a Venezuela? Efecto Cocuyo, págs. Recuperado de: https://efectococuyo.com/cambio-climatico/que-pasa-con-los-fenomenos-de-el-nino-y-la-nina-venezuela/.
[14] Marcelino, C., Leite, G., Delgado, C., de Oliveira, L., Wanner, E., Jiménez-Fernández, S., & Salcedo-Sanz, S. (2021). An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants. Expert Systems With Applications, https://doi.org/10.1016/j.eswa.2021.115638.
[15] National Oceanic and Atmospheric Administration. (8 de Febrero de 2024). EL NIÑO/SOUTHERN OSCILLATION (ENSO) DIAGNOSTIC DISCUSSION. Climate Prediction Center, pág. Recuperado de: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml.
[16] Okoye, G., Kassem, Y., & Gökçekuş, H. (2023). Assessing the impacts of climate change on hydropower generation and the power sector in Nigeria. China Petroleum Processing and Petrochemical Technology, 1-15.
[17] REN21. (2023). Global Status Report - Renewables 2023. París: REN21 Secretariat.
[18] Sun, X., Luo, J., & Xie, J. (2018). Multi-Objective Optimization for Reservoir Operation Considering Water Diversion and Power Generation Objectives. MDPI Water, https://doi.org/10.3390/w10111540.
[19] Wei, N., Yang, F., Lu, K., Xi, J., & Zhang, S. (2022). A Method of Multi-Objective Optimization and Multi-Attribute Decision-Making for Huangjinxia Reservoir. MDPI Applied Sciences, https://doi.org/10.3390/app12136300.
[20] Yeung, D., & Zhang, Y. (2023). Bi-Objective Optimization: A Pareto Method with Analytical Solutions. Applied Mathematics, 57-81. https://doi.org/10.4236/am.2023.141004.
[21] Zhou, E., Liu, X., Meng, Z., Yu, S., Mei, J., & Qu, Q. (2023). Optimizing Hydropower Station Scheduling: A Multi-Objective Real-Time Approach. Scientific Reports, https://doi.org/10.21203/rs.3.rs-3009681/v1.
[22] Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A Tutorial on Evolutionary Multiobjective Optimization. En X. Gandibleux , M. Sevaux, K. Sörensen, & V. T'kindt, Metaheuristics for Multiobjective Optimisation (págs. 3-37). Berlin: Springer. https://doi.org/10.1007/978-3-642-17144-4_1.
[2] Ahmad, M., Beddu, S., Itam, Z., & Ismail Alanimi, F. (2019). State of the Art Compendium of Macro and Micro Energies. Advances in Science and Technology Research Journal, 88-109. https://doi.org/10.12913/22998624/103425.
[3] Al Shidhani, T., Ioannou, A., & Falcone, G. (2020). Multi-Objective Optimisation for Power System Planning Integrating Sustainability Indicators. MDPI Energies, https://doi.org/10.3390/en13092199.
[4] Coello Coello, C., Lamont, G., & Van Veldhuizen, D. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems. New York, USA: Springer.
[5] Emmerich, M., & Deutz, A. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary methods. Natural Computing, 585-609. https://doi.org/10.1007/s11047-018-9685-y.
[6] Gujarati, D., & Porter, D. (2010). Econometría. México, D. F.: McGraw-Hill/Interamericana Editores, S.A. DE C.V.
[7] Hojjati, A., Monadi, M., Faridhosseini, A., & Mohammadi, M. (2018). Application and comparison of NSGA-II and MOPSO in multi-objective optimization of water resources systems. Journal of Hydrology and Hydromechanics, 323-329. https://doi.org/10.2478/johh-2018-0006.
[8] Huang, G., Tan, M., Meng, Z., Yan, J., Chen, J., & Qu, Q. (2023). Hydropower Scheduling with Power Load Prediction: Optimizing Energy Efficiency and Navigation Performance. Research Square, https://doi.org/10.21203/rs.3.rs-2959078/v1.
[9] Hussain, A., & Kim, H.-M. (2021). Evaluation of Multi-Objective Optimization Techniques for Resilience Enhancement of Electric Vehicles. MDPI Electronics, https://doi.org/10.3390/electronics10233030.
[10] Jena, C., Guerrero, J., Abusorrah, A., & Al-Turk, Y. (2022). Multi-Objective Generation Scheduling of Hydro-Thermal System Incorporating Energy Storage With Demand Side Management Considering Renewable Energy Uncertainties. IEEE Access, 52343-52357. https://doi.org/10.1109/ACCESS.2022.3172500.
[11] Karami, F., & Dariane, A. (2022). A review and evaluation of multi and many-objective optimization: Methods and algorithms. Global Journey of Ecology, 104-119. https://dx.doi.org/10.17352/gje.000070.
[12] Li, F.-F., & Qiu, J. (2015). Multi-Objective Reservoir Optimization Balancing Energy Generation and Firm Power. Energies, 6963-6976. https://doi.org/10.3390/en8076962.
[13] López, M. (11 de Febrero de 2024). ¿Qué pasa con los fenómenos de El Niño y La Niña y cómo esto afecta a Venezuela? Efecto Cocuyo, págs. Recuperado de: https://efectococuyo.com/cambio-climatico/que-pasa-con-los-fenomenos-de-el-nino-y-la-nina-venezuela/.
[14] Marcelino, C., Leite, G., Delgado, C., de Oliveira, L., Wanner, E., Jiménez-Fernández, S., & Salcedo-Sanz, S. (2021). An efficient multi-objective evolutionary approach for solving the operation of multi-reservoir system scheduling in hydro-power plants. Expert Systems With Applications, https://doi.org/10.1016/j.eswa.2021.115638.
[15] National Oceanic and Atmospheric Administration. (8 de Febrero de 2024). EL NIÑO/SOUTHERN OSCILLATION (ENSO) DIAGNOSTIC DISCUSSION. Climate Prediction Center, pág. Recuperado de: https://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/ensodisc.shtml.
[16] Okoye, G., Kassem, Y., & Gökçekuş, H. (2023). Assessing the impacts of climate change on hydropower generation and the power sector in Nigeria. China Petroleum Processing and Petrochemical Technology, 1-15.
[17] REN21. (2023). Global Status Report - Renewables 2023. París: REN21 Secretariat.
[18] Sun, X., Luo, J., & Xie, J. (2018). Multi-Objective Optimization for Reservoir Operation Considering Water Diversion and Power Generation Objectives. MDPI Water, https://doi.org/10.3390/w10111540.
[19] Wei, N., Yang, F., Lu, K., Xi, J., & Zhang, S. (2022). A Method of Multi-Objective Optimization and Multi-Attribute Decision-Making for Huangjinxia Reservoir. MDPI Applied Sciences, https://doi.org/10.3390/app12136300.
[20] Yeung, D., & Zhang, Y. (2023). Bi-Objective Optimization: A Pareto Method with Analytical Solutions. Applied Mathematics, 57-81. https://doi.org/10.4236/am.2023.141004.
[21] Zhou, E., Liu, X., Meng, Z., Yu, S., Mei, J., & Qu, Q. (2023). Optimizing Hydropower Station Scheduling: A Multi-Objective Real-Time Approach. Scientific Reports, https://doi.org/10.21203/rs.3.rs-3009681/v1.
[22] Zitzler, E., Laumanns, M., & Bleuler, S. (2004). A Tutorial on Evolutionary Multiobjective Optimization. En X. Gandibleux , M. Sevaux, K. Sörensen, & V. T'kindt, Metaheuristics for Multiobjective Optimisation (págs. 3-37). Berlin: Springer. https://doi.org/10.1007/978-3-642-17144-4_1.
Copyright © 2025 César A. Yajure-Ramírez, Revista Tecnológica ESPOL - RTE

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License