Preparation and Characterization of a W/O Composite Camellia Microemulsion for Cosmetic Applications

Journal: Journal of Clinical Medicine Research DOI: 10.32629/jcmr.v6i3.4420

Yao Qin, Jingru Qian, Bingqing Yu, Jialei Yan, Yiyi Peng, Jianming Wang, Tingzhi Zhang, Jing Wang

Syoung Cosmetics Manufacturing Co., Ltd., Changsha 410006, Hunan, China

Abstract

Camellia seed oil (CA) is a promising cosmetic raw material with excellent antioxidant and reparative properties. In this study, a W/O composite camellia microemulsion (CCME) was prepared using a mixture of camellia seed oil and surfactants (soy lecithin and dipropylene glycol, Km=2.5:1) at a 5:5 ratio. The physicochemical properties were investigated, including average particle size, zeta potential, and storage stability. DLS results showed that the values of the average particle size and the polydispersity index (PDI) for the obtained CCME prepared under the optimized conditions were 68.96±2.91nm and 0.267±0.015. The formulation exhibited excellent centrifugal and static stability, facilitating its application in cosmetic products. Compared to pure camellia seed oil, the composite camellia microemulsion showed significantly higher DPPH radical scavenging capacity (88.25 ± 2.13%, P < 0.05). In skin-soothing efficacy tests using a 3D skin model, the composite microemulsion demonstrated superior repair effects over camellia seed oil. Further verification revealed that this enhanced reparative performance may be attributed to its upregulated expression of skin barrier structural proteins such as loricrin (LOR). In conclusion, the composite camellia microemulsion developed in this work exhibits favorable application potential and efficacy, indicating its significant benefits for cosmetic applications.

Keywords

camellia seed oil; microemulsion; W/O; skin permeation; transdermal delivery; skin barrier repair; cosmetics

References

[1] Huang, R. L. Chinese camellia oil (Second Edition). Beijing: China. Forestry. Publishing. House. 2008.
[2] Guo, J. J.; Luo J.; Liu, H. H.; Jin, D. C. Active components and skin care properties of tea seed oil from camellia sinensis. BioResources. 2024, 19, 7166-7182. [ doi: 10.15376/biores.19.4.7166-7182 ]
[3] Salinero, C.; Feás, X.; Mansilla, J. P.; Seijas, J. A.; Vázquez-Tato, M. P.; Vela, P.; Sainz, M. J. 1H-nuclear magnetic resonance analysis of the triacyl glyceride composition of cold-pressed oil from Camellia japonica. Molecules. 2012, 17, 6716-6727.
[4] Jeon, H.; Kim, J. Y.; Choi, J. K.; Han, E.; Song, C.; Lee, J.; Cho, Y. S. Effects of the extracts from fruit and stem of camellia japonica on induced pluripotency and wound healing. J. Clin. Med. 2018, 7, 449.
[5] Jung, E.; Lee, J.; Beak, J.; Jung, K.; Lee, J.; Huh, S.; Kim, S.; Koh, J.; Park, D. Effect of camellia japonica oil on human type I procollagen production and skin barrier function. J. Ethnopharmacol. 2007, 112, 127-131.
[6] Zhu, M.; Jing, R. S. Preparation and Activity study of antioxidant camellia moisturizing oil. J. Hefei Univ. Technol. 2019, 42, 273-277.
[7] Piao, M. J.; Yoo, E. S.; Koh, Y. S.; Kang, H. K.; Kim, J.; Kim, Y. J.; Kang, H. H.; Hyun, J. W. Antioxidant effects of the ethanol extract from flower of camellia japonica via scavenging of reactive oxygen species and induction of antioxidant enzymes. Int. J. Mol. Sci. 2011, 12, 2618-2630.
[8] Lawrence, M. J.; Gees, G. D. Microemulsion-based media as novel drug delivery systems. Adv. Drug Deliv. Rev. 2000, 45, 89-121.
[9] Li, L. F.; Qu, J. P.; Liu, W. D.; Peng, B. L.; Cong, S. N.; Yu, H. B.; Zhang, B.; Li, Y. Y. Advancements in characterization techniques for microemulsions: from molecular insights to macroscopic phenomena. Molecules. 2024, 29, 2901.
[10] Tsai, M. J.; Chang, W. Y.; Chiu, I. H.; Lin, I. L.; Wu, P. C. Improvement in Skin Penetration Capacity of Linalool by Using Microemulsion as a Delivery Carrier: Formulation Optimization and In Vitro Evaluation. Pharmaceutics. 2023, 15, 1446.
[11] Lu, T. M. T.; Huynh, K. D.; Nguyen, M. D. Applications of lecithin in emulsion stabilization and advanced delivery systems in cosmetics: A mini-review. Results Surf. Interfaces. 2025, 19, 100543.
[12] Pearson, R. H.; Pascher I. The molecular structure of lecithin dihydrate. Nature. 1979, 281, 499-501.
[13] Moghandam, S. H.; Saliaj, E.; Wettig, S. D.; Dong, C.; Ivanova, M. V.; Huzil, J. T.; Foldvari, M. Effect of chemical permeation enhancers on stratum corneum barrier lipid organizational structure and interferon alpha permeability. Mol. Pharm. 2013, 10, 2248–2260.
[14] Almgren, M. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. Colloids Surf. B Biointerfaces. 2000, 1508, 146-163.
[15] Callender, S. P.; Mathews, J. A.; Kobernyk, K.; Wettig, S. D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm. 2017, 526, 425–442.
[16] Okur, N. U.; Yavasoğlu, Y.; Karasulu, H. Y. Preparation and evaluation of microemulsion formulations of naproxen for dermal delivery. Chem. Pharm. Bull. 2014, 62, 135-143.
[17] Blois, M. S. Antioxidant determination by the use of a stable free radical. Nature. 1958, 181, 1199-1200.
[18] Caddeo, C.; Manconi, M.; Fadda, A. M.; Lai, F.; Lampis, S.; Díez-Sales, O.; Sinico, C. Nanocarriers for antioxidant resveratrol: Formulation approach vesicle self-assembly and stability evaluation. Colloids Surf. B Biointerfaces. 2013, 111, 327-332.
[19] Hwang, J. H.; Jeong, H.; Lee, N.; Hur, S.; Lee, N.; Han, J. J.; Jang, H. W.; Choi, W. K.; Nam, K, T.; Lim, K. M. Ex vivo live full-thickness porcine skin model as a versatile in vitro testing method for skin barrier research. Int. J. Mol. Sci. 2021, 22, 657.
[20] Jung, Y. O.; Jeong, H.; Cho, Y.; Lee, E. O.; Jang, H. W.; Kim, J.; Nam, K.; Lim, K. M. Lysates of a probiotic, Lactobacillus rhamnosus, Can improve skin barrier function in a reconstructed human epidermis model. Int. J. Mol. Sci. 2019, 20, 4289.
[21] Akiyama, M. The roles of ABCA12 in epidermal lipid barrier formation and keratinocyte differentiation. Biochim. Biophys. Acta. 2014, 1841, 4435-440.
[22] Jing, C. X.; Guo, J. L.; Li, Z. Z.; Xu, X. H.; Wang, J.; Zhai, L.; Liu, J. Z.; Sun, G.; Wang, F.; Xu, Y. F. Screening and research on skin barrier damage protective efficacy of different mannosylerythritol lipids. Molecules. 2022, 27, 4648.
[23] Sun, W.; He, J.; Zhang, Y. H.; He, R. K.; Zhang, X. G. Comprehensive functional evaluation of a novel collagen for the skin protection in human fibroblasts and keratinocytes. Biosci. Biotechnol. Biochem. 2023, 87, 724-735.
[24] Hashimoto-Hachiya, A.; Tsuji, G.; Murai, M.; Yan, X. H.; Furue, M. Upregulation of FLG, LOR, and IVL expression by Rhodiola crenulata root extract via aryl hydrocarbon receptor: differential involvement of OVOL1. Int. J. Mol. Sci. 2018, 19, 1654.
[25] Chaiyana, W.; Leelapornpisid, P.; Jakmunee, J.; Korsamphan, C. Antioxidant and Moisturizing Effect of Camellia assamica Seed Oil and Its Development into Microemulsion. Cosmetics. 2018, 5, 40.
[26] El Maghraby, G.M. Transdermal delivery of hydrocortisone from eucalyptus oil microemulsion: Effects of cosurfactants. Int. J. Pharm. 2008, 355, 285–292.
[27] Trotta, M.; Ugazio, E.; Gasco, M. R. Pseudo-ternary phase diagrams of lecithin-based microemulsions: Influence of monoalkylphosphates. J. Pharm. Pharmacol. 1995, 47, 451–454.

Copyright © 2025 Yao Qin, Jingru Qian, Bingqing Yu, Jialei Yan, Yiyi Peng, Jianming Wang, Tingzhi Zhang, Jing Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License