Design, Synthesis, and Aggregation-Induced Emission Characteristics of Pure Organic Blue and Yellow Light-Emitting Materials

Journal: Architecture Engineering and Science DOI: 10.32629/aes.v5i4.3214

Tingting Huang1, Qiaoqiao Zhang2, Jinhui Yue2, Yue Zhao2, Jiuming Li3, Huiting Li1

1. The School of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China;Nanocarbon Materials Laboratory - Key Laboratory of the Inner Mongolia Autonomous Region, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China;Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
2. The School of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China
3. The School of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China;Nanocarbon Materials Laboratory - Key Laboratory of the Inner Mongolia Autonomous Region, Inner Mongolia Minzu University, Tongliao 028000, Inner Mongolia, China

Abstract

In this research, quinoreoline and 2,3-dicyanopyrazine were utilized as the acceptor units, with nitrogen n-butylcarbazole acting as the donor unit to synthesize the emissive materials DNBuCz-Q and DNBuCz-DCNPy, which emit butterfly blue and yellow light, respectively. A range of mixed solvents consisting of water and acetone (CH3COCH3/H2O) were employed to examine the aggregation-induced luminescence characteristics using fluorescent spectroscopy at room temperature. The results revealed that the fluorescence intensity increased as the water content rose, confirming that both materials possess aggregation-induced emission properties. Furthermore, the luminescence mechanism of the materials was investigated in accordance with the molecular design approach.

Keywords

butterfly-shaped D-A-D molecular, aggregation-induced emission, blue lighting, yellow lighting

References

[1] Tu, L. Xie, Y. Li, Z. Tang, B. Z. (2021) Aggregation-induced emission: Red and near‐infrared organic light-emitting diodes. SmartMat, 2, 326-346.
[2] C, Carla. Peixoto, M. Paixão, J. A. Pineiro, M. Melo, J. S. S. (2024) Tuning the AIE Properties of Di-tert-Butyl-diphenyldibenzofulvene Derivatives. J. Phys. Chem. C, 128, 1156-1164.
[3] Zhao, D. You, J. Fu, H. Xue, T. Hao, T. Wang, X. Wang, T. (2020) Photopolymerization with AIE dyes for solid-state luminophores. Polym. Chem, 11, 1589-1596.
[4] Liu, H. Xiong, L.-H. Kwok, R. T. K. He, X. Lam, J. W. Y. Tang, B. Z. (2020) AIE Bioconjugates for Biomedical Applications. Adv. Opt. Mater, 8, 2000162 .
[5] Zhan, R. Pan, Y. Manghnani, P. N. Liu, B. (2017) AIE Polymers: Synthesis, Properties, and Biological Applications. Macromol. Biosci, 17, 1600433.
[6] Shellaiah, M. Sun, K. (2022) Pyrene-Based AIE Active Materials for Bioimaging and Theranostics Applications. Biosensors, 12, 550.
[7] Zhao,Y. Li, Q. Wang, E. Niu, Z. (2022) Wavelength-tunable AIEgens based on 6-methoxy-2-naphthaldehyde: AIE behavior and bioimaging performance. Spectrochim. Acta. A Mol. Biomol. Spectrosc, 281, 121621.
[8] Hu, R. Yang, X. Qin, A. Tang, B. Z. (2021) AIE polymers in sensing, imaging and theranostic applications. Mater. Chem. Front, 5, 4073-4088.
[9] Hu, L. Sun, Ji. Han, J. Duan, Y. Han, T. (2017) An AIE luminogen as a multi-channel sensor for ethanol. Sens. Actuators B Chem, 239, 467-473.
[10] Zhang, E. Hou, X. Zhang, Z. Zhang, Y. Wang, J. Yang, H. You, J. Ju, P. (2019) A novel biomass-based reusable AIE material: AIE properties and potential applications in amine/ammonia vapor sensing and information storage. J. Mater. Chem. C, 7, 8404-8411.
[11] Gao, Y. Wei, K. Li, J. Li, Y. Hu, J. (2018) A facile four-armed AIE fluorescent sensor for heparin and protamine.
Actuators B Chem, 277, 408-414.
[12] Afrina, A. Swamy, P. C. A. (2024) Symphony of light: AIE and MFC in carbazole-based cyanostilbenes. J. Mater. Chem. C, 12, 1923-1944.
[13] He, Z. Tian, S. Gao, Y. Meng, F. Luo, L. (2021) Luminescent AIE Dots for Anticancer Photodynamic Therapy. Front. Chem, 9, 672917.
[14] Xue, B. Hou, A. Du, Y. Qi, Y. Jiang, H. Zhou, H. Zhou, Z. Chen, H. (2023) AIE donor-dependent photosensitizer for enhance photodynamic antibacterial interface. Surf. Interfaces, 39, 102996.
[15] Zhou, C. Zhang, X. Pan, G. Tian, X. Xiao, S. Liu, H. Zhang, S. Yang, B. (2019) Investigation on excited-state properties and electroluminescence performance of Donor-Acceptor materials based on quinoxaline derivatives. Org. Electron, 75, 105414.
[16] He, Y. Zhang, C. Yan, H. Chai, Y. Zhou, D. (2023) A simple strategy for obtaining aggregation-induced delayed fluorescence material achieving nearly 20% external quantum efficiency for non-doped solution-processed OLEDs. Chem. Eng. J, 476, 146675.
[17] Zhang, K. Shu, J. Chu, W. Liu, X. Xu, B. Jiang, W. (2021) AIE and mechanofluorochromic enhancement properties. Dyes Pigments, 185, 108898.
[18] Lai, Q. Liu, Q. Zhao, K. Shan, C. Wojtas, L. Zheng, Q. Shi, X. Song, Z. (2019) Rational design and synthesis of yellow-light emitting triazole fluorophores with AIE and mechanochromic properties. Chem. Commun, 55, 4603-4606.

Copyright © 2025 Tingting Huang, Qiaoqiao Zhang, Jinhui Yue, Yue Zhao, Jiuming Li, Huiting Li

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License