Changes in vegetation structure and hydrological function in response to rangeland rest

Journal: Region - Water Conservancy DOI: 10.32629/rwc.v6i1.1170

Raúl E Tácuna, Lucrecia  Aguirre, Enrique R Flores

National Agrarian University La Molina


An experiment was carried out to evaluate the effects of grazing rest on the vegetation structure, the hydrological function, and the ecological status in grasslands of regular condition for cattle. The study area is located at 4,095 meters above sea level, in the Cordillera Blanca peasant community, Ancash Region, Peru. The experimental design was factorial 2 x 2 in blocks, where the factors were: a) two grazing systems P1: uncontrolled grazing on communal usufruct lands and P2: rest or total exclusion of grazing, and b) three years of monitoring from 2011 to 2013. At the end of the study, the vegetation structure changed according to the regime of the rangeland use, where rest favored the increase of local gramineae species, but unfavorable for herbs, pseudogramineae, and shrubs. Resting increased the vegetation cover, the accumulation of biomass and mulch on the ground with respect to grazing (P < 0.01). The hydrological function improved with the application of rest compared to grazing, which was reflected in a higher infiltration capacity and soil moisture content (P < 0.01). The ecological processes improved with resting compared to grazing expressed by the increase of the ecological status of the pasture, in response to the improvement of the components that determine its value, such as forage species and vigor (P < 0.01).


rest; continuous grazing; native plants; hydrologic function; ecological status


This study was funded by the MC Knight Foundation in collaboration with the Mountain Institute and ANCASH. The author appreciates the valuable comments and suggestions provided by the doctoral team on the manuscript.


[1] Aboling S., Sternberg M., Perevolotsky A. & Kigel J. 2008. Effects of cattle grazing timing and intensity on soil seed banks and regeneration strategies in a Mediterranean grassland. Community Ecology, 9: 97-106. DOI:
[2] AOAC. 1980. Official Methods of Analysis. 13th Edition. AOAC (Association of Official Analytical Chemists). Washington DC.
[3] Bouwer H. 1986. Intake Rate: Cylinder Infiltrometer. In: Page A.L., Miller R.H. & Keeney D.R. Methods of Soil Analysis. Part I. Physical and Mineralogical Methods. 825-844. Second edition. American Society of Agronomy & Soil Science Society of America Publisher. Number 9 (Part 1) in the series AGRONOMY. Madison, Wisconsin / USA.
[4] Call C.A. & Roundy B.A. 1991. Perspectives and processes in revegetation of arid and semiarid rangelands. Journal of Range Management, 44(6): 543-549. DOI:
[5] De Villalobos A.E. & Zalba S.M. 2010. Continuous feral horse grazing and grazing exclusion in mountain pampean grasslands in Argentina. Acta Oecol., 36(5): 514-519. DOI:
[6] Distel R.A. 2013. Manejo del pastoreo en pastizales de zonas áridas y semiáridas. Revista Argentina de Producción Animal, 33(1): 53-64.
[7] Elzinga C. L., Salzer D.W. & Willoughby J.W. 1998. Measuring and monitoring plant populations. Bureau of Land Management. Denver, CO.
[8] Flores E.R. 1999. Tambos alpaqueros y pastizales II: Mejoramiento de praderas naturales. Proyecto especial tambos alpaqueros. Boletín técnico LUP Nº 12. Lima, Perú.
[9] Jia B.R., Zhou G.S., Wang Y., Wang F. & Wang X. 2006. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensissteppes, Inner Mongolia. J. Arid Environ., 67: 60-76. DOI:
[10] Josse C., Cuesta F., Navarro G., Barrena V., Cabrera E., Chacón-Moreno E., Ferreira W., Peralvo M., Saito J. & Tovar A. 2009. Ecosistemas de los Andes del Norte y Centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina.
[11] Kent M. 2012. Vegetation description and data analysis. A practical approach. 2nd. Edition Wiley-Blackwell.
[12] Lezama F., Baeza S., Altesor A., Cesa A., Chaneton E.J. & Paruelo J.M. 2014. Variation of grazing-induced vegetation changes across a large-scale productivity gradient. Journal of Vegetation Science, 25(1): 8-21. DOI:
[13] Liu B. & Shao M. 2014. Estimation of soil water storage using temporal stability in four land uses over 10 years on the Loess Plateau, China. J. Hydrol., 517: 974-984. DOI:
[14] Loydi A. & Distel R.A. 2010. Diversidad florística bajo diferentes intensidades de pastoreo por grandes herbívoros en pastizales serranos del Sistema de Ventania, Buenos Aires. Ecol. Austral, 20(3): 281-291.
[15] Merritt D.M. & Bateman H.L. 2012. Linking stream flow and groundwater to avian habitat in a desert riparian system. Ecol. Appl., 22(7): 1973-1988. DOI:
[16] Milchunas D.G., Sala O.E. & Lauenroth W.K. 1988. A generalized model of the effects of grazing by large herbivores on grassland community structure. The American Naturalist. 132(1): 87-106.
[17] Parker K.W. 1951. A method for measuring trend in range condition on national forest ranges. Forest Service / U.S. Dept. Agr. Washington, D.C.
[18] Pierson F.B., Spaeth K.E., Weltz M.A. & Carlson D.H. 2002. Hydrologic response of diverse western rangelands. Journal of Range Management,55(6):558-570. DOI:
[19] Rong Y., Yuan F. & Ma L. 2014. Effectiveness of enclosures for restoring soils and vegetation degraded by overgrazing in the Junggar Basin, China. Grassland Science, 60(2): 118-124. DOI:
[20] Ruppert J.C., Harmoney K., Henkin Z., Snyman H.A., Sternberg M., Willms W. & Linstädter A. 2015. Quantifying drylands' drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Global Change Biology, 21(3): 1258-1270. DOI:
[21] SAS Institute. 2004. Statistical Analysis System SAS/STAT 9.2 User’s Guide. SAS Institute Inc., Cary, NC.
[22] SENAMHI. 2015. Precipitación total anual, según departamento, 2000 - 2015. SENAMHI (Servicio Nacional de Meteorología e Hidrología). Perú.ógicos.
[23] Shi Z.H., Yue B.J., Wang L., Fang N.F., Wang D. & Wu F.Z. 2013. Effects of mulch cover rate on interrill erosion processes and the size selectivity of eroded sediment on steep slopes. Soil Sci. Soc. Am. J., 77: 257-267. DOI:
[24] Weinert J.R. & Williams C.A. 2018. Recovery of Pasture Forage Production Following Winter Rest in Continuous and Rotational Horse Grazing Systems. Journal of Equine Veterinary Science, 70: 32-37. DOI:
[25] Yates C.J., Norton D.A. & Hobbs R.J. 2000. Grazing effects on plant cover: soil and microclimate in fragmented woodlands in south-western Australia: implications for restoration. Aust. Ecol., 25: 36-47. DOI:
[26] Yayneshet T., Eik L.O. & Moe S.R. 2009. The effects of exclosures in restoring degraded semi-arid vegetation in communal grazing lands in northern Ethiopia. J. Arid Environ.,73(4-5):542-549. DOI:
[27] Zhang C., Dong Q., Chu H., Shi J., Li S., Wang Y. & Yang X. 2017. Grassland Community Composition Response to Grazing Intensity Under Different Grazing Regimes. Rangeland Ecology & Management, 71(2): 196-204. DOI:

Copyright © 2023 Raúl E Tácuna, Lucrecia  Aguirre, Enrique R Flores

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License