Biological Biomarkers in Respiratory Diseases

Journal: Advances in Medicine and Engineering Interdisciplinary Research DOI: 10.32629/ameir.v2i1.1865

Francisco García-Río1, Bernardino Alcázar-Navarrete2, Diego Castillo-Villegas3, Catia Cilloniz4, Alberto García-Ortega5, Virginia Leiro-Fernández6, Irene Lojo-Rodriguez6, Alicia Padilla-Galo7, Carlos A. Quezada-Loaiza8, Jose Antonio Rodriguez-Portal9, Manuel Sánchez-de-la-Torre10, Oriol Sibila11, Miguel A. Martínez-García12

1. Pneumology Department, Hospital Universitario la Paz-IdiPAZ, Madrid, Spain.; CIBER of Respiratory Diseases, ISCIII, Madrid, Spain.
2. CIBER of Respiratory Diseases, ISCIII, Madrid, Spain.; Pneumology Department, Hospital Virgen de las Nieves, Granada, Spain.
3. Pneumology Department, Hospital Santa Creu i Sant Pau, Barcelona, Spain.
4. Pneumology Department, Hospital Clínic, Barcelona, Spain.
5. Pneumology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
6. Pneumology Department, Hospital Álvaro Cunqueiro. Complexo Hospitalario Universitario de Vigo. NeumovigoI+i Research Group. IIS Galicia Sur, Vigo, Pontevedra, Spain.
7. Pneumology Department, Hospital Costa del Sol, Marbella, Malaga, Spain.
8. CIBER of Respiratory Diseases, ISCIII, Madrid, Spain.; Lung Transplantation Unit, Pneumology Department, Hospital Universitario 12 de Octubre, Madrid, Spain.
9. CIBER of Respiratory Diseases, ISCIII, Madrid, Spain.; Pneumology Department, Hospital Virgen del Rocío, Seville, Spain.
10. CIBER of Respiratory Diseases, ISCIII, Madrid, Spain.; Group of Precision Medicine in Chronic Diseases. Respiratory Department. University Hospital Arnau de Vilanova and Santa Maria. Department of Nursing and Physiotherapy, Faculty of Nursing and Physiotherapy, University of Lleida, IRB Lleida, Lleida, Spain.
11. CIBER of Respiratory Diseases, ISCIII, Madrid, Spain.; Pneumology Service, Clinical Respiratory Institute. IDIBAPS. Hospital Clínic, Barcelona, Spain.
12. CIBER of Respiratory Diseases, ISCIII, Madrid, Spain.; Pneumology Department, Hospital Universitario y Politécnico La Fe, Valencia, Spain.

Abstract

In recent years, personalized or precision medicine has made effective inroads into the management of diseases, including respiratory diseases. The route to implementing this approach must invariably start with the identification and validation of biological biomarkers that are closely related to the diagnosis, treatment, and prognosis of respiratory patients. In this respect, biological biomarkers of greater or lesser reliability have been identified for most respiratory diseases and disease classes, and a large number of studies are being conducted in the search for new indicators. The aim of this review is to update the reader and to analyze the existing scientific literature on the existence and diagnostic, therapeutic, and prognostic validity of the most important biological biomarkers in the main respiratory diseases, and to identify future challenges in this area.

Keywords

biomarkers; respiratory disorders; COPD; chronic obstructive pulmonary disease; asthma; idiopathic pulmonary fibrosis; pleural effusion; lung cancer; sleep apnea; pulmonary embolism; pulmonary arterial hypertension; pneumonia; cystic fibrosis

References

[1] FitzGerald GA. 2016. Measure for measure: biomarker standards and transparency. Sci Transl Med, 8: 343fs10.
[2] FDA-NIH Biomarker Working Group. 2016. BEST (biomarkers endpoints, and other tools) resource. Silver Spring (MD): Food and Drug Administration.
[3] Anaya JM, Duarte-Rey C, Sarmiento-Monroy JC, Bardey D, Castiblanco J, Rojas Villarraga A. 2016. Personalized medicine. Closing the gap between knowledge and clinical practice. Autoimmun Rev, 15: 833-42.
[4] Califf RM. 2018. Biomarker definitions and their applications. Exp Biol Med (May wood), 243: 213-21.
[5] Aronson JK, Ferner RE. 2017. Biomarkers - a general review. Curr Protoc Pharmacol, 76: 9.23.1-17.
[6] Novelli G, Ciccacci C, Borgiani P, Papaluca Amati M, Abadie E. 2008. Genetic tests and genomic biomarkers: regulation, qualification and validation. Clin Cases MinerBone Metab, 5: 149-54.
[7] Frantzi M, Bhat A, Latosinska A. 2014. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med, 3: 7.
[8] Marchand CR, Farshidfar F, Rattner J, Bathe OF. 2018. A framework for development of useful metabolomic biomarkers and their effective knowledge translation. Metabolites, 8: 59.
[9] García-Giménez JL, Seco-Cervera M, Tollefsbol TO, Romá-Mateo C, Peiró-Chova L, Lapunzina P, et al. 2017. Epigenetic biomarkers: current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci, 54: 529-50.
[10] Insel TR. 2017. Digital phenotyping: technology for a new science of behavior. JAMA, 318: 1215-6.
[11] Soriano JB, Alfageme I, Miravitlles M, de Lucas P, Soler-CatalunaJJ, García Río F, et al. 2021. Prevalence and determinants of COPD in Spain: EPISCAN II. Arch Bronconeumol, 57: 61-9.
[12] Fermont JM, Masconi KL, Jensen MT, Ferrari R, di Lorenzo VAP, Marott JM, et al. 2019. Biomarkers and clinical outcomes in COPD: a systematic review and meta analysis. Thorax, 74: 439-46.
[13] Thomsen M, Ingebrigtsen TS, Marott JL, Dahl M, Lange P, Vestbo J, et al. 2013. Inflammatory biomarkers and exacerbations in chronic obstructive pulmonary disease. JAMA, 309: 2353.
[14] Park HY, Churg A, Wright JL, Li Y, Tam S, Man SFP, et al. 2013. Club cell protein 16 and disease progression in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 188: 1413-9.
[15] Guerra S, Halonen M, Vasquez MM, Spangenberg A, Stern DA, Morgan WJ, et al. 2015. Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: aprospective study. Lancet Respir Med, 3: 613-20.
[16] Stockley RA, Halpin DMG, Celli BR, Singh D. 2019. Chronic obstructive pulmonary disease biomarkers and their interpretation. Am J Respir Crit Care Med, 199: 1195-204.
[17] Martínez-Gestoso S, García-Sanz MT, Calvo-Álvarez U, Doval-OubinaL, Camba Matos S, Salgado FJ, et al. 2021. Variability of blood eosinophil count and prognosis of COPD exacerbations. Ann Med, 53: 1152-8.
[18] Matamala N, Lara B, Gómez-Mariano G, Martínez S, Vázquez-Domínguez I, Otero-Sobrino Á, et al. 2020. miR-320c regulates SERPINA1 expression and is induced in patients with pulmonary disease. Arch Bronconeumol (Engl Ed), S0300-2896(20)30084-3.
[19] García-Valero J, Olloquequi J, Rodríguez E, Martín-Satué M, Texidó L, Ferrer J. 2021. Decreased expression of EC-SOD and fibulin-5 in alveolar walls of lungs from COPD patients. Arch Bronconeumol (Engl Ed), S0300-2896(21)00016-8.
[20] Rosas-Alonso R, Galera R, Sánchez-Pascuala JJ, Casitas R, Burdiel M, Martínez Cerón E, et al. 2020. Hypermethylation of anti-oncogenic microRNA 7 is increased in emphysema patients. Arch Bronconeumol (Engl Ed), 56: 506-13.
[21] Bafadhel M, Peterson S, de Blas MA, Calverley PM, Rennard SI, Richter K, et al. 2018. Predictors of exacerbation risk and response to budesonide in patients with chronic obstructive pulmonary disease: a post-hoc analysis of three randomized trials. Lancet Respir Med, 6: 117-26.
[22] Harries TH, Rowland V, Corrigan CJ, Marshall IJ, McDonnell L, Prasad V, et al. 2020. Blood eosinophil count, a marker of inhaled corticosteroid effectiveness in preventing COPD exacerbations in post-hoc RCT and observational studies: systematic review and meta-analysis. Respir Res, 21: 3.
[23] Miravitlles M, Monteagudo M, Solntseva I, Alcázar B. 2021. Blood eosinophil counts and their variability and risk of exacerbations in COPD: a population-based study. Arch Bronconeumol, 57: 13-20.
[24] Golpe R, Dacal D, Sanjuán-López P, Martín-Robles I, Pérez-de-Llano LA. 2020. Plasma eosinophil count and patient-centered events in chronic obstructive pulmonary disease in real-life clinical practice. Arch Bronconeumol, 56: 129-30.
[25] Golpe R, Dacal D, Sanjuán-López P, Martín-Robles I, Pérez-de-Llano LA. 2020. Plasma eosinophil count and patient-centered events in chronic obstructive pulmonary disease in real-life clinical practice. Arch Bronconeumol, 56: 129-30.
[26] Soler-Cataluna JJ, Novella L, Soler C, Nieto ML, Esteban V, Sánchez-Toril F, et al. 2020. Clinical characteristics and risk of exacerbations associated with different diagnostic criteria of asthma-COPD overlap. Arch Bronconeumol, 56: 282-90.
[27] Díaz López JM, Giran González B, Alcázar-Navarrete B. 2020. Medicina personalizadaenla enfermedad pulmonar obstructiva crónica: ¿cómo de cerca estamos? Arch Bronconeumol, 56: 420-1.
[28] Miravitlles M, Calle M, Soler-Cataluna JJ. 2021. Ges EPOC 2021: one more step towards personalized treatment of COPD. Arch Bronconeumol, 57: 9-10.
[29] Plaza V, Blanco M, García G, Korta J, Molina J, Quirce S. 2021. Highlights of the Spanish Asthma Guidelines (GEMA), version 5.0. Arch Bronconeumol (Engl Ed), 57: 11-2.
[30] Alexis NE. 2014. Biomarker sampling of the airways in asthma. Curr Opin Pulm Med, 20: 46-52.
[31] Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A, et al. 2019. Toward clinically applicable biomarkers for asthma: an EAACI position paper. Allergy, 74: 1835-51.
[32] García Ródenas MM, Fernández-Aracil C, Marco de la Calle FM. 2021. Might basophils be a reliable biomarker in severe asthma? Arch Bronconeumol, 57: 79-80.
[33] Seys SF. 2017. Role of sputum biomarkers in the management of asthma. Curr Opin Pulm Med, 23: 34-40.
[34] Wagener AH, de Nijs SB, Lutter R, Sousa AR, Weersink EJM, Bel EH, et al. 2015. External validation of blood eosinophils FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax, 70: 115-20.
[35] Arismendi E, Picado Vallés C. 2020. Current role of biomarkers in severe uncontrolled asthma. Arch Bronconeumol, 56: 347-8. http://dx.doi.org/10.1016/j.arbr.2019.08.016
[36] FitzGerald JM, Bleecker ER, Menzies-Gow A, Zangrilli JG, Hirsch I, Metcalfe P, et al. 2018. Predictors of enhanced response with benralizumab for patients with severe asthma: pooled analysis of the SIROCCO and CALIMA studies. Lancet Respir Med, 6: 51-64.
[37] Mallah N, Rodriguez-Segade S, Gonzalez-Barcala FJ, Takkouche B. 2021. Bloodeosinophil count as predictor of asthma exacerbation. A meta-analysis. Pediatr Allergy Immunol, 32: 465-78.
[38] Gonzalez-Barcala FJ, San-Jose ME, Nieto-Fontarigo JJ, Carreira JM, Calvo Alvarez U, Cruz MJ, et al. 2018. Association between blood eosinophil count with asthma hospital read missions. Eur J Intern Med, 53: 34-9.
[39] Andújar-Espinosa R, Salinero-González L. 2021. Vitamin D supplementation: a treatment with possible benefits in asthma. Arch Bronconeumol (Engl Ed), S0300-2896(21)00027-2.
[40] Korn S, Haasler I, Fliedner F, Becher G, Strohner P, Staatz A, et al. 2012. Monitoring free serum IgE in severe asthma patients treated with omalizumab. Respir Med, 106: 1494-500.
[41] Ojanguren I, Plaza VV. 2021. FeNO for asthma diagnosis in adults: more lights than shadows. Arch Bronconeumol, 57: 85-6.
[42] Yang D, Huang T, Liu B, Du Z, Liu C. 2020. Dupilumab in patients with uncontrolled asthma: type 2 biomarkers might be predictors of therapeutic efficacy. J Asthma, 57: 79-81.
[43] Vázquez-Mera S, Pichel JG, Salgado FJ. 2021. Involvement of IGF proteins in severe allergic asthma: new roles for old players. Arch Bronconeumol (Engl Ed), S0300-2896(21)00094-6.
[44] Nieto-Fontarigo JJ, Salgado FJ, San-José ME, Cruz MJ, Casas-Fernández A, Gómez-Conde MJ, et al. 2018. The CD14 (-159 C/T) SNP is associated with sCD14 levels and allergic asthma, but not with CD14 expression on monocytes. Sci Rep, 8: 4147.
[45] Nieto-Fontarigo JJ, Salgado FJ, San-José ME, Cruz MJ, Valdés L, Pérez-Díaz A, et al. 2019. Expansion of different subpopulations of CD26-/low T cells in allergic and non-allergic asthmatics. Sci Rep, 9: 7556.
[46] Nieto-Fontarigo JJ, González-Barcala FJ, Andrade-Bulos LJ, San-José ME, Cruz MJ, Valdés-Cuadrado L, et al. 2020. iTRAQ-based proteomic analysis reveals potential serum biomarkers of allergic and nonallergic asthma. Allergy, 75: 3171-80.
[47] Carpagnano GE, Scioscia G, Lacedonia D, Soccio P, Quarato CMI, Cotugno G, et al. 2021. Searching for inflammatory and oxidative stress markers capable of clustering severe asthma. Arch Bronconeumol (Engl Ed), 57: 338-44.
[48] Spoto S, Legramante JM, Minieri M, Fogolari M, Terrinoni A, Valeriani E, et al. 2020. How biomarkers can improve pneumonia diagnosis and prognosis: procalcitonin and mid-regional-pro-adrenomedullin. Biomark Med, 14: 549-62.
[49] Julián-Jiménez A, González Del Castillo J, Candel FJ. 2017. Usefulness and prognostic value of biomarkers in patients with community-acquired pneumonia in the emergency department. Med Clin (Barc), 148: 501-10.
[50] Almirall J, Bolíbar I, Toran P, Pera G, Boquet X, Balanzó X, et al. 2004. Contribution of C-reactive protein to the diagnosis and assessment of severity of community acquired pneumonia. Chest, 125: 1335-42.
[51] Flanders SA, Stein J, Shochat G, Sellers K, Holland M, Maselli J, et al. 2004. Performance of a bedside C-reactive protein test in the diagnosis of community-acquired pneumonia in adults with acute cough. Am J Med, 116: 529-35.
[52] Self WH, Balk RA, Grijalva CG, Williams DJ, Zhu Y, Anderson EJ, et al. 2017. Procalcitonin as a marker of etiology in adults hospitalized with community-acquired pneumonia. Clin Infect Dis, 65: 183-90.
[53] Kamat IS, Ramachandran V, Eswaran H, Guffey D, Musher DM. 2019. Procalciton into distinguish viral from bacterial pneumonia: a systematic review and meta analysis. Clin Infect Dis, 70: 538-42.
[54] Wu MH, Lin CC, Huang SL, Shih HM, Wang CC, Lee CC, et al. 2013. Can procalcitonin tests aid in identifying bacterial infections associated with influenza pneumonia? A systematic review and meta-analysis. Influenza Other Respir Viruses, 7: 349-55.
[55] Brown JS. 2009. Biomarkers and community-acquired pneumonia. Thorax, 64: 556-8.
[56] Andersen SB, Baunbæk Egelund G, Jensen AV, Petersen PT, Rohde G, RavnP. 2017. Failure of CRP decline within three days of hospitalization is associated with poor prognosis of community-acquired pneumonia. Infect Dis (London), 49: 251-60.
[57] Masiá M, Gutiérrez F, Shum C, Padilla S, Navarro JC, Flores E, et al. 2005. Usefulness of procalcitonin levels in community-acquired pneumonia according to the patients outcome research team pneumonia severity index. Chest, 128: 2223-9.
[58] Krüger S, Ewig S, Marre R, Papassotiriou J, Richter K, von Baum H, et al. 2008. Pro calcitonin predicts patients at low risk of death from community-acquired pneumonia across all CRB-65 classes. Eur Respir J. 2008;31: 349-55.
[59] Ramírez P, Ferrer M, Martí V, Reyes S, Martínez R, Menéndez R, et al. 2011. Inflammatory biomarkers and prediction for intensive care unit admission in severe community-acquired pneumonia. Crit Care Med, 39: 2211-7.
[60] Self WH, Grijalva CG, Williams DJ, Woodworth A, Balk RA, Fakhran S, et al. 2016. Procalcitonin as an early marker of the need for invasive respiratory or vasopressor support in adults with community-acquired pneumonia. Chest, 150: 819-28.
[61] Seo H, Cha S-I, Shin K-M, Lim J-K, Choi S-H, Lee Y-H, et al. 2020. Clinical impact of N-terminal prohormone of brain natriuretic peptide on patients hospitalized with community-acquired pneumonia. Am J Med Sci, 360: 383-91.
[62] Ceccato A, Panagiotarakou M, Ranzani OT, Martin-Fernandez M, Almansa-Mora R, Gabarrus A, et al. 2019. Lymphocytopenia as a predictor of mortality in patients with icu-acquired pneumonia. J Clin Med, 8: 843.
[63] Menéndez R, Méndez R, Aldás I, Reyes S, Gonzalez-Jimenez P, Espana PP, et al. 2019. Community-acquired pneumonia patients at risk for early and long term cardiovascular events are identified by cardiac biomarkers. Chest, 156: 1080-91.
[64] Putot A, Bouhey E, Tetu J, Barben J, Timsit E, Putot S, et al. 2020. Troponin elevation in older patients with acute pneumonia: frequency and prognostic value. J Clin Med, 9: 3623.
[65] Schuetz P, Wirz Y, Sager R, Christ-Crain M, Stolz D, Tamm M, et al. 2017. Procalcitonin to initiate or discontinue antibiotics in acute respiratory tract infections. Cochrane Database Syst Rev, 10: CD007498.
[66] Schuetz P, Christ-Crain M, Wolbers M, Schild U, Thomann R, Falconnier C, et al. 2007. Procalcitonin guided antibiotic therapy and hospitalization in patients with lower respiratory tract infections: a prospective, multicenter, randomized controlled trial. BMC Health Serv Res, 7: 102.
[67] Pink I, Raupach D, Fuge J, Vonberg R-P, Hoeper MM, Welte T, et al. 2021. C-reactive protein and procalcitonin for antimicrobial stewardship in COVID-19. Infection, 49: 935-43.
[68] Branche A, Neeser O, Mueller B, Schuetz P. 2019. Procalcitonin to guide antibiotic decision making. Curr Opin Infect Dis, 32: 130-5.
[69] Bartoletti M, Antonelli M, Bruno Blasi FA, Casagranda I, Chieregato A, Fumagalli R, et al. 2018. Procalcitonin-guided antibiotic therapy: an expert consensus. Clin Chem Lab Med, 56: 1223-9.
[70] Pfister R, Kochanek M, Leygeber T, Brun-Buisson C, Cuquemelle E, Benevides Machado M, et al. 2014. Procalcitonin for diagnosis of bacterial pneumonia in critically ill patients during 2009 H1N1 influenza pandemic: a prospective cohort study, systematic review and individual patient data meta-analysis. Crit Care, 18: R44.
[71] Lisboa T, Seligman R, Diaz E, RodriguezA, Teixeira PJZ, Rello J. 2008. C-reactive protein correlates with bacterial load and appropriate antibiotic therapy in suspected ventilator-associated pneumonia. Crit Care Med, 36: 166-71.
[72] Cillóniz C, Torres A, Garcia-Vidal C, Moreno-Garcia E, Amaro R, Soler N, et al. 2021. The value of C-reactive protein-to-lymphocyte ratio in predicting the severity of SARS-CoV-2 pneumonia. Arch Bronconeumol, 57: 79-82.
[73] Espana PP, Capelastegui A, Mar C, Bilbao A, Quintana JM, Diez R, et al. 2015. Performance of pro-adrenomedullin for identifying adverse outcomes in community-acquired pneumonia. J Infect, 70: 457-66.
[74] Legramante JM, Mastropasqua M, Susi B, Porzio O, Mazza M, Miranda Agrippino G, et al. 2017. Prognostic performance of MR-pro-adrenomedullin in patients with community acquired pneumonia in the Emergency Department compared to clinical severity scores PSI and CURB. PLOS ONE, 12: e0187702.
[75] Burgmeijer EH, Duijkers R, Lutter R, Bonten MJM, Schweitzer VA, Boersma WG. 2019. Plasma cytokine profile on admission related to aetiology in community acquired pneumonia. Clin Respir J, 13: 605-13.
[76] Andrijevic I, Matijasevic J, Andrijevic L, Kovacevic T, Zaric B. 2014. Interleukin-6 and procalcitonin as biomarkers in mortality prediction of hospitalized patients with community acquired pneumonia. Ann Thorac Med, 9: 162-7.
[77] Fernandes CD, Arriaga MB, Costa MCM, Costa MCM, Costa MHM, Vinhaes CL, et al. 2019. Host inflammatory biomarkers of disease severity in pediatric community-acquired pneumonia: a systematic review and meta-analysis.Open Forum Infect Dis, 6: ofz520.
[78] Guo M, Cao X, Shen B, Geng X, Chen R, Gong S, et al. 2020. The predictive value of NT pro-brain natriuretic peptide for risk of pneumonia in patients on maintenance hemodialysis. Blood Purif, 49: 348-55.
[79] Kolditz M, Halank M, Schiemanck CS, Schmeisser A, Höffken G. 2006. High diagnostic accuracy of NT-proBNP for cardiac origin of pleural effusions. Eur Respir J, 28: 144-50.
[80] Krüger S, Ewig S, Kunde J, Hartmann O, Suttorp N, Welte T, et al. 2010. Pro-atrial natriuretic peptide and pro-vasopressin for predicting short-term and long term survival in community-acquired pneumonia: results from the German Competence Network CAPNETZ. Thorax, 65: 208-14.
[81] Tekerek NU, Akyildiz BN, Ercal BD, Muhtaroglu S. 2018. New biomarkers to diagnose ventilator associated pneumonia: pentraxin 3 and surfactant protein D. Indian J Pediatr, 85: 426-32.
[82] Song J, Park DW, Moon S, Cho H-J, Park JH, Seok H, et al. 2019. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to theSepsis-3 definitions. BMC Infect Dis, 19: 968.
[83] Ebrahimi F, Wolffenbuttel C, Blum CA, Baumgartner C, Mueller B, Schuetz P, et al. 2019. Fibroblast growth factor 21 predicts outcome in community-acquired pneumonia: secondary analysis of two randomized controlled trials. Eur Respir J, 53: 1800973.
[84] Prendki V, Malézieux-Picard A, Azurmendi L, Sanchez J-C, Vuilleumier N, Carballo S, et al. 2020. Accuracy of C-reactive protein, procalcitonin, serum amyloid A and neopterin for low-dose CT-scan confirmed pneumonia in elderly patients: a prospective cohort study. PLOS ONE, 15: e0239606.
[85] Raess N, Schuetz P, Cesana-Nigro N, Winzeler B, Urwyler SA, Schaedelin S, et al. 2021. Influence of prednisone on inflammatory biomarkers in community-acquired pneumonia: secondary analysis of a randomized trial. J Clin Pharmacol, 61: 1406-14.
[86] Kim MW, Lim JY, Oh SH. 2017. Mortality prediction using serum biomarkers and various clinical risk scales in community-acquired pneumonia. Scand J Clin Lab Invest, 77: 486-92.
[87] Zhou H, Guo S, Lan T, Ma S, Zhang F, Zhao Z. 2018. Risk stratification and prediction value of procalcitonin and clinical severity scores for community-acquired pneumonia in ED. Am J Emerg Med, 36: 2155-60.
[88] Cury VF, Antoniazzi LQ, de Oliveira PHK, Borelli WV, Cunha SVda, Frison GC, et al. 2021. Developing the pneumonia-optimized ratio for community-acquired pneumonia: an easy, inexpensive and accurate prognostic biomarker. PLOS ONE, 16: e0248897.
[89] Alan M, Grolimund E, Kutz A, Christ-Crain M, Thomann R, Falconnier C, et al. 2015. Clinical risk scores and blood biomarkers as predictors of long-term outcome inpatients with community-acquired pneumonia: a 6-year prospective followup study. J Intern Med, 278: 174-84.
[90] Martínez-García MA, Oliveira C, Máiz L, Girón RM, Prados C, De la Rosa D, et al. 2019. Bronchiectasis: a complex heterogeneous disease. Arch Bronconeumol, 55: 427-33.
[91] Agustí A, Bafadhel M, Beasley R, Bel EH, Faner R, Gibson PG, et al. 2017. Precision medicine in airway diseases: moving to clinical practice. Eur Respir J, 50: 1701655.
[92] Stockley RA, Bayley D, Hill SL, Hill AT, Crooks S, Campbell EJ. 2001. Assessment of airway neutrophils by sputum colour: correlation with airways inflammation. Thorax, 56: 366-72.
[93] McKelvey MC, Brown R, Ryan S, Mall MA, Weldon S, Taggart CC. 2021. Proteases mucus, and mucosal immunity in chronic lung disease. Int J Mol Sci, 22: 5018.
[94] Chalmers JD, Moffitt KL, Suarez-Cuartin G, Sibila O, Finch S, Furrie E, et al. 2017. Neutrophil elastase activity is associated with exacerbations and lung function decline in bronchiectasis. Am J Respir Crit Care Med, 195: 1384-93.
[95] Chalmers JD, Haworth CS, Metersky ML, Loebinger MR, Blasi F, Sibila O, et al. 2020. Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis. N Engl J Med, 383: 2127-37.
[96] Sibila O, Laserna E, Shoemark A, Keir HR, Finch S, Rodrigo-Troyano A, et al. 2019. Airway bacterial load and inhaled antibiotic response in bronchiectasis. Am J Respir Crit Care Med, 2019: 33-41.
[97] Faner R, Sibila O, Agustí A, Bernasconi E, Chalmers JD, Huffnagle GB, et al. 2017. The microbiome in respiratory medicine: current challenges and future perspectives. Eur Respir J, 49: 1602086.
[98] Posadas T, Oscullo G, Zaldivar E, Villa C, Dobarganes Y, Girón R, et al. 2021. Creactive protein concentration in steady-state bronchiectasis: prognostic value of future severe exacerbations data from the Spanish Registry of Bronchiectasis (RIBRON). Arch Bronconeumol, 57: 21-7.
[99] Ley B, Brown KK, Collard HR. 2014. Molecular biomarkers in idiopathic pulmonary fibrosis. Am J Physiol Cell Mol Physiol, 307: L681-91.
[100] Sellarés J, Molina-Molina M. 2020. Biomarcadores séricos en las enfermedades pulmonares intersticiales difusas. Arch Bronconeumol, 56: 349-50.
[101] Spagnolo P, Tzouvelekis A, Maher TM. 2015. Personalized medicine in idiopathic pulmonary fibrosis: facts and promises. Curr Opin Pulm Med, 21: 470-8.
[102] Adegunsoye A, Rekha V, Noth I. 2019. Integrating genomics into management of fibrotic interstitial lung disease. Chest, 155: 1026-40.
[103] Guo L, Yang Y, Liu F, Jiang C, Yang Y, Pu H, et al. 2020. Clinical research on prognostic evaluation of subjects with IPF by peripheral blood biomarkers quantitative imaging characteristics and pulmonary function parameters. Arch Bronconeumol, 56: 365-72. http: //dx.doi.org/10.1016/j.arbres.2019.08.020
[104] Bermudo G, Suarez-Cuartin G, Rivera-Ortega P, Rodriguez-Portal JA, Sauleda J, NunezB, et al. 2021. Different faces of idiopathic pulmonary fibrosis with preserved forced vital capacity. Arch Bronconeumol. http: //dx.doi.org/10.1016/j.arbres.2021.03.018. S0300-2896(21)00116-2.
[105] Castillo Villegas D, Barril S, Giner J, Millan-Billi P, Rodrigo-Troyano A, Merino JL, et al. 2021. Study of diffuse interstitial lung disease with the analysis of volatile particles in exhaled air. Arch Bronconeumol (Engl Ed). http: //dx.doi.org/10.1016/j.arbres.2021.03.014. S0300-2896(21)00112-5.
[106] Castillo D, Sánchez-Font A, Pajares V, Franquet T, Llatjós R, Sansano I, et al. 2020. A multidisciplinary proposal for a diagnostic algorithm in idiopathic pulmonary fibrosis: the role of transbronchial cryobiopsy. Arch Bronconeumol, 56: 99-105.
[107] Molina-Molina M. 2019. The future of pharmacological treatment in idiopathic pulmonary fibrosis. Arch Bronconeumol, 55: 642-7.
[108] Salvador-Corres I, Quirant-Sanchez B, Teniente-Serra A, Centeno C, Moreno A, Rodríguez-Pons L, et al. 2021. Detection of autoantibodies in bronchoalveolar lavage in patients with diffuse interstitial lung disease. Arch Bronconeumol (Engl Ed), 57: 351-8. http://dx.doi.org/10.1016/j.arbres.2020.08.020
[109] Lopez-Lopez L, Cabrera Cesar E, Lara E, Hidalgo-San Juan MV, Parrado C, Martín Montanez E, et al. 2021. Pro-fibrotic factors as potential biomarkers of anti-fibrotic drug therapy in patients with idiopathic pulmonary fibrosis. Arch Bronconeumol, 57: 231-3.
[110] Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing GJ, Harjola VP, et al. 2019. 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the task force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Respir J, 54: 1901647.
[111] Ceriani E, Combescure C, Le Gal G, Nendaz M, Perneger T, Bounameaux H, et al. 2010. Clinical prediction rules for pulmonary embolism: a systematic review and meta-analysis. J Thromb Haemost, 8: 957-70.
[112] Lobo JL, Alonso S, Arenas J, Domènech P, Escribano P, Fernández-Capitán C, et al. 2021. Multidisciplinary consensus for the management of pulmonary thromboembolism. Arch Bronconeumol. http://dx.doi.org/10.1016/j.arbres.2021.01.031. S0300-2896(21)00056-9
[113] Carrier M, Righini M, Djurabi RK, Huisman MV, Perrier A, Wells PS, et al. 2009. VIDAS D-dimer in combination with clinical pre-test probability to rule out pulmonary embolism. A systematic review of management outcome studies. Thromb Haemost, 101: 886-92.
[114] Righini M, Van Es J, Den Exter PL, Roy PM, Verschuren F, Ghuysen A, et al. 2014. Age adjusted D-dimer cutoff levels to rule out pulmonary embolism: the ADJUST-PE study. JAMA, 311: 1117-24.
[115] Eichinger S, Heinze G, Jandeck LM, Kyrle PA. 2010. Risk assessment of recurrence inpatients with unprovoked deep vein thrombosis or pulmonary embolism: the Vienna prediction model. Circulation, 121: 1630-6
[116] Tosetto A, Iorio A, Marcucci M, Baglin T, Cushman M, Eichinger S, et al. 2012. Predicting disease recurrence in patients with previous unprovoked venous thromboembolism: a proposed prediction score (DASH). J Thromb Haemost, 10: 1019-25.
[117] Rodger MA, Le Gal G, Anderson DR, Schmidt J, Pernod G, Kahn SR, et al. 2017. Validating the HERDOO2 rule to guide treatment duration for women with unprovoked venous thrombosis: multinational prospective cohort management study. BMJ, 356: j1065.
[118] Rodriguez-Sevilla JJ, Rodó-Pin A, Espallargas I, Villar-García J, Molina L, Pérez Terán P, et al. 2020. Pulmonary embolism in patients with COVID-19 pneumonia: the utility of D-dimer. Arch Bronconeumol (Engl Ed), 56: 758-9.
[119] Bajaj A, Saleeb M, Rathor P, Sehgal V, Kabak B, Hosur S. 2015. Prognostic value of troponins in acute nonmassive pulmonary embolism: a meta-analysis. Heart Lung, 44: 327-34.
[120] Kaeberich A, Seeber V, Jiménez D, Kostrubiec M, Dellas C, Hasenfuß G, et al. 2015. Age-adjusted high-sensitivity troponin T cut-off value for risk stratification of pulmonary embolism. Eur Respir J, 45: 1323-31.
[121] Becattini C, Vedovati MC, Agnelli G. 2007. Prognostic value of troponins in acute pulmonary embolism: a meta-analysis. Circulation, 116: 427-33.
[122] Dellas C, Puls M, Lankeit M, Schäfer K, Cuny M, Berner M, et al. 2010. Elevated heart type fatty acid-binding protein levels on admission predict an adverse outcome in normotensive patients with acute pulmonary embolism. J Am Coll Cardiol, 55: 2150-7.
[123] Kucher N, Printzen G, Doernhoefer T, Windecker S, Meier B, Hess OM. 2003. Low pro-brain natriuretic peptide levels predict benign clinical outcome in acute pulmonary embolism. Circulation, 107: 1576-8.
[124] Klok FA, Mos IC, Huisman MV. 2008. Brain-type natriuretic peptide levels in the prediction of adverse outcome in patients with pulmonary embolism: a systematic review and meta-analysis. Am J Respir Crit Care Med, 178: 425-30.
[125] Hellenkamp K, Pruszczyk P, Jiménez D, Wyzgał A, Barrios D, Ciurzynski M, et al. 2018. Prognostic impact of copeptin in pulmonary embolism: a multicentre validation study. Eur Respir J, 51: 1702037.
[126] Shapiro NI, Trzeciak S, Hollander JE, Birkhahn R, Otero R, Osborn TM, et al. 2009. A prospective, multicenter derivation of a biomarker panel to assess risk of organ dysfunction, shock, and death in emergency department patients with suspected sepsis. Crit Care Med, 37: 96-104.
[127] Kostrubiec M, Pływaczewska M, Jiménez D, Lankeit M, Ciurzynski M, Konstantinides S, et al. 2019. The prognostic value of renal function in acute pulmonary embolism - a multi-centre cohort study. Thromb Haemost, 119: 140-8.
[128] Zhou XY, Chen HL, Ni SS. 2017. Hyponatremia and short-term prognosis of patients with acute pulmonary embolism: a meta-analysis. Int J Cardiol, 227: 251-6.
[129] Kostrubiec M, Łabyk A, Pedowska-Włoszek J, Dzikowska-Diduch O, Wojciechowski A, GarlinskaM, et al. 2012. Neutrophil gelatinase-associated lipocalin, cystatin C and eGFR indicate acute kidney injury and predict prognosis of patients with acute pulmonary embolism. Heart, 98: 1221-8.
[130] Robin P, Le Roux PY, Tromeur C, Planquette B, Prévot-Bitot N, Lavigne C, et al. 2017. Risk factors of occult malignancy in patients with unprovoked venous thromboembolism. Thromb Res, 159: 48-51.
[131] Han D, óHartaigh B, Lee JH, Cho IJ, Shim CY, Chang HJ, et al. 2016. Impact of D-dimer for prediction of incident occult cancer in patients with unprovoked venous thromboembolism. PLOS ONE, 11: e0153514.
[132] Bertoletti L, Robin P, Jara-Palomares L, Tromeur C, Pastre J, Prevot-Bitot N, et al. 2017. Predicting the risk of cancer after unprovoked venous thromboembolism: external validation of the RIETE score. J Thromb Haemost, 15: 2184-7.
[133] Jara-Palomares L, Otero R, Jimenez D, Praena-Fernandez JM, Font C, Falga C, et al. 2018. Validation of a prognostic score for hidden cancer in unprovoked venous thromboembolism. PLOS ONE, 13: e0194673.
[134] Marchena Yglesias PJ, Nieto Rodríguez JA, Serrano Martínez S, Belinchón Moya O, Cortés Carmona A, Díaz de TuestaA, et al. 2006. Acute-phase reactants and markers of inflammation in venous thromboembolic disease: correlation with clinical and evolution parameters. An Med Intern, 23: 105-10.
[135] Wang Q, Ma J, Jiang Z, Ming L. 2018. Prognostic value of neutrophil-to-lymphocyteratio and platelet-to-lymphocyte ratio in acute pulmonary embolism: a systematic review and meta-analysis. Int Angiol, 37: 4-11.
[136] Ertem AG, Yayla C,Acar B, Kirbas O, Unal S, Uzel Sener M, et al. 2018. Relation between lymphocyte to monocyte ratio and short-term mortality in patients with acute pulmonary embolism. Clin Respir J, 12: 580-6.
[137] Lankeit M, Kempf T, Dellas C, Cuny M, Tapken H, Peter T, et al. 2008. Growth differentiation factor-15 for prognostic assessment of patients with acute pulmonary embolism. Am J Respir Crit Care Med, 177: 1018-25.
[138] Maisel A, Mueller C, Nowak RM, Peacock WF, Ponikowski P, Mockel M, et al. 2011. Midregion prohormone adrenomedullin and prognosis in patients presenting with acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure)trial. J Am Coll Cardiol, 58: 1057-67.
[139] Qin J, Liang H, Shi D, Dai J, Xu Z, Chen D, et al. 2015. A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombol, 39: 215-21.
[140] Xiao J, Jing ZC, Ellinor PT, Liang D, Zhang H, Liu Y, et al. 2011. MicroRNA-134 as apotential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med, 9: 159.
[141] Zhou X, Wen W, Shan X, Qian J, Li H, Jiang T, et al. 2016. MiR-28-3p as a potential plasma marker in diagnosis of pulmonary embolism. Thromb Res, 138: 91-5.
[142] Finlay BB. 2020. Are noncommunicable diseases communicable? Science, 367: 250-1.
[143] Galiè N, Humbert M, Vachiery J-L, Gibbs S, Lang I, Torbicki A, et al. 2015. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society(ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC) International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J, 46: 903-75.
[144] Quezada Loaiza CA, Velázquez Martín MT, Jiménez López-Guarch C, Ruiz Cano MJ, Navas Tejedor P, Carreira PE, et al. 2017. Trends in pulmonary hypertension over a period of 30 years: experience from a single referral centre. Rev Esp Cardiol (Engl Ed), 70: 915-23.
[145] Gaggin HK, Januzzi Jr JL. 2014. Natriuretic peptides in heart failure and acute coronary syndrome. Clin Lab Med, 34: 43-58.
[146] Warwick G, Thomas PS, Yates DH. 2008. Biomarkers in pulmonary hypertension. Eur Respir J, 32: 503-12.
[147] Souza R, Bogossian HB, Humbert M, Jardim C, Rabelo R, Amato MB, et al. 2005. N-terminal-pro-brain natriuretic peptide as a haemodynamic marker in idiopathic pulmonary arterial hypertension. Eur Respir J, 25: 509-13. http: //dx.doi.org/10.1183/09031936.05.00100504.
[148] Pezzuto B, Badagliacca R, Poscia R, Ghio S, D'Alto M, Vitulo P, et al. 2015. Circulating biomarkers in pulmonary arterial hypertension: update and future direction. J Heart Lung Transplant, 34: 282-305. http://dx.doi.org/10.1016/j.healun.2014.12.005.
[149] Soon E, Holmes AM, Treacy CM, Doughty NJ, Southgate L, Machado RD, et al. 2010. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation, 122: 920-7. http: //dx.doi.org/10.1161/CIRCULATIONAHA.109.933762.
[150] Weatherald J, Boucly A, Montani D, Jaïs X, Savale L, Humbert M, et al. 2020. Gas exchange and ventilatory efficiency during exercise in pulmonary vascular diseases. Arch Bronconeumol (Engl Ed), 56: 578-85.
[151] de Groot PM, Wu CC, Carter BW, Munden RF. 2018. The epidemiology of lung cancer. Transl Lung Cancer Res, 7: 220-33.
[152] Tang J, Curull V, Ramis-Cabrer D, Duran X, Rodríguez-Fuster A, Aguiló R, et al. 2021. Preoperative body weight and albumin predict survival in patients with resectable lung neoplasms: role of COPD. Arch Bronconeumol (Engl Ed), 57: 51-60.
[153] Gonzalez Barcala FJ, Garcia Prim JM, Moldes Rodriguez M, Alvarez Fernandez J, Rey Rey MJ, Pose Reino A, et al. 2010. Platelet count: association with prognosis in lung cancer. Med Oncol, 27: 357-62.
[154] Yamasaki M, Matsumoto N, Nakano S, Kawamoto K, Taniwaki M, Izumi Y, et al. 2020. Osimertinib for the treatment of EGFR mutation-positive lung adenocarcinoma complicated with dermatomyositis. Arch Bronconeumol (Engl Ed), 56: 822-3.
[155] García-Pachón E, Padilla-Navas I. 2020. Microbioma de la vía aérea inferior y cáncerde pulmón. Arch Bronconeumol, 6: 410.
[156] Garrido-Martín EM, Paz-Ares L. 2020. Lung cancer and microbiome. Arch Bronconeumol (Engl Ed), 56: 3-4.
[157] Kerr KM, Bibeau F, Thunnissen E, Botling J, RyskaA, Wolf J, et al. 2021. The evolving landscape of biomarker testing for non-small cell lung cancer in Europe. Lung Cancer, 154: 161-75.
[158] Taus Á, Camacho L, Rocha P, Hernández A, Longarón R, Clavé S, et al. 2021. Plasmatic KRAS kinetics for the prediction of treatment response and progression in patients with KRAS-mutant lung adenocarcinoma. Arch Bronconeumol (EnglEd), 57: 323-9.
[159] Ostrin EJ, Sidransky D, Spira A, Hanash SM. 2020. Biomarkers for lung cancer screening and detection. Cancer Epidemiol Biomarkers Prev, 29: 2411-5.
[160] Lam S, Boyle P, Healey GF, Maddison P, Peek L, Murray A, et al. 2011. Early CDT-Lung: an immunobiomarker test as an aid to early detection of lung cancer. Cancer Prev Res (Phila), 4: 1126-34.
[161] Massion PP, Healey GF, Peek LJ, Fredericks L, Sewell HF, Murray A, et al. 2017. Autoantibody signature enhances the positive predictive power of computed tomography and nodule-based risk models for detection of lung cancer. J Thorac Oncol, 12: 578-84.
[162] Edelsberg J, Weycker D, Atwood M, Hamilton-Fairley G, Jett JR. 2018. Cost effectiveness of an autoantibody test (EarlyCDT-Lung) as an aid to early diagnosis of lung cancer in patients with incidentally detected pulmonary nodules. PLOS ONE, 13: e0197826.
[163] Chapman CJ, Healey GF, Murray A, Boyle P, Robertson C, Peek LJ, et al. 2012. EarlyCDT®-Lung test: improved clinical utility through additional autoantibody assays. Tumour Biol, 33: 1319-26.
[164] Jett JR, Peek LJ, Fredericks L, Jewell W, Pingleton WW, Robertson JFR. Audit of the autoantibody test EarlyCDT®-lung, in 1600 patients: an evaluation of its performance in routine clinical practice. Lung Cancer, 83: 51-5.
[165] Sullivan FM, Mair FS, Anderson W, Armory P, Briggs A, Chew C, et al. 2021. Earlier diagnosis of lung cancer in a randomized trial of an autoantibody blood test followed by imaging. Eur Respir J, 57: 2000670.
[166] Silvestri GA, Tanner NT, Kearney P, Vachani A, Massion PP, Porter A, et al. 2018. Assessment of plasma proteomics biomarker's ability to distinguish benign from malignant lung nodules: results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) Trial. Chest, 154: 491-500.
[167] Tanner NT, Springmeyer SC, Porter A, Jett JR, Mazzone P, Vachani A, et al. 2020. Assessment of integrated classifier's ability to distinguish benign from malignant lung nodules: extended analyses and 2-year follow-up results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) Trial. Chest, 101: 1283-7.
[168] Han ZJ, Wu XD, Cheng JJ, Zhao SD, Gao MZ, Huang HY, et al. 2015. Diagnostic accuracy of natriuretic peptides for heart failure in patients with pleural effusion: asystematic review and updated meta-analysis. PLOS ONE, 10: e0134376.
[169] Porcel JM, Vives M, Cao G, Bielsa S, Ruiz-González A, Martínez-Irribarren A, et al. 2009. Biomarkers of infection for the differential diagnosis of pleural effusions. Eur Respir J, 34: 1383-9.
[170] Palma RM, Bielsa S, Esquerda A, Martínez-Alonso M, Porcel JM. 2019. Diagnostic accuracy of pleural fluid adenosine deaminase for diagnosing tuberculosis meta-analysis of Spanish studies. Arch Bronconeumol, 55: 23-30.
[171] Botana-Rial MI, Vázquez-Iglesias L, Casado-Rey P, Páez de la Cadena M, Andrade-Olivié MA, Abal-Arca J, et al. 2020. Validation of calprotectin as a novel biomarker for the diagnosis of pleural effusion: a multicentre trial. Sci Rep, 10: 5679.
[172] Yao Y, Peng M, Shen Q, Hu Q, Gong H, Li Q, et al. 2019. Detecting EGFR mutations and ALK/ROS1 rearrangements in non-small cell lung cancer using malignant pleural effusion samples. Thorac Cancer, 10: 193-202.
[173] Redline S, Tishler P. 2000. The genetics of sleep apnea. Sleep Med Rev, 4: 583-602.
[174] Fleming WE, Holty J-EC, Bogan RK, Hwang D, Ferouz-Colborn AS, Budhiraja R, et al. 2018. Use of blood biomarkers to screen for obstructive sleep apnea. Nat Sci Sleep, 10: 159-67.
[175] Canto GDL, Pachêco-Pereira C, Aydinoz S, Major PW, Flores-Mir C, Gozal D. 2015. Biomarkers associated with obstructive sleep apnea: a scoping review. Sleep Med Rev, 23: 28-45.
[176] Santamaría-Martos F, Benítez I, Zapater A, Girón C, Pinilla L, Fernandez-RealJM, et al. 2019. Identification and validation of circulating miRNAs as endogenous controls in obstructive sleep apnea. PLOS ONE, 14: e0213622.
[177] Santamaría-Martos F, Benítez I, Ortega F, Zapater A, Girón C, Pinilla L, et al. 2019. Circulating microRNA profile as a potential biomarker for obstructive sleep apnea diagnosis. Sci Rep, 9: 13456.
[178] Sánchez-de-la-Torre M, Khalyfa A, Sánchez-de-la-Torre A, Martinez-AlonsoM, Martinez-García MA, Barceló A, et al. 2015. Precision medicine in patients with resistant hypertension and obstructive sleep apnea: blood pressure response to continuous positive airway pressure treatment. J Am Coll Cardiol, 66: 1023-32.
[179] Gozal D, Jortani S, Snow AB, Kheirandish-Gozal L, Bhattacharjee R, Kim J, et al. 2009. Two-dimensional differential in-gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am J Respir Crit Care Med, 180: 1253-61.
[180] Kheirandish-Gozal L, McManus CJT, Kellermann GH, Samiei A, Gozal D. 2013. Urinary neurotransmitters are selectively altered in children with obstructive sleep apnea and predict cognitive morbidity. Chest, 143: 1576-83.
[181] Bisogni V, Pengo MF, Maiolino G, Rossi GP. 2016. The sympathetic nervous system and catecholamines metabolism in obstructive sleep apnoea. J Thorac Dis, 8: 243-54.
[182] Dyugovskaya L, Lavie P, Lavie L. 2002. Increased adhesion molecules expression and production of reactive oxygens pecies in leukocytes of sleep apnea patients. Am J Respir Crit Care Med, 165: 934-9.
[183] Fernández-Bello I, Monzón Manzano E, García Río F, Justo Sanz R, Cubillos Zapata C, Casitas R, et al. 2020. Procoagulant state of sleep apnea depends on systemic inflammation and endothelial damage. Arch Bronconeumol (Engl Ed). http://dx.doi.org/10.1016/j.arbres.2020.11.017
[184] Rångemark C, Hedner JA, Carlson JT, Gleerup G, Winther K. 1995. Platelet function and fibrinolytic activity in hypertensive and normotensive sleep apnea patients. Sleep, 18: 188-94.
[185] Carpagnano GE, Kharitonov SA, Resta O, Foschino-Barbaro MP, Gramiccioni E, Barnes PJ. 2003. 8-Isoprostane, a marker of oxidative stress, is increased inexhaled breath condensate of patients with obstructive sleep apnea after night and is reduced by continuous positive airway pressure therapy. Chest, 124: 1386-92.
[186] Barceló A, Miralles C, Barbe F, Vila M, Pons S, Agustí AG. 2000. Abnormal lipid peroxidation in patients with sleep apnoea. Eur Respir J, 16: 644-7.
[187] Yamauchi M, Tamaki S, TomodaK, Yoshikawa M, FukuokaA, MakinodanK, et al. 2006. Evidence for activation of nuclear factor kappaB in obstructive sleep apnoea. Sleep Breath, 10: 189-93.
[188] Santamaria-Martos F, Benítez I, Girón C, Barbé F, Martínez-García MA,Hernández L, et al. 2018. Biomarkers of carcinogenesis and tumour growth in patients with cutaneous melanoma and obstructive sleep apnoea. Eur Respir J, 51: 1701885.
[189] Cubillos-Zapata C, Martínez-García MA, Campos-Rodriguez F, Sánchez-de-la Torre M, Nagore E, Martorell-Calatayud A, et al. 2019. Soluble PD-L1 is a potential biomarker of cutaneous melanoma aggressiveness and metastasis in obstructive sleep apnoea patients. Eur Respir J, 53: 1801298.
[190] Strange C, Highland KB. Interstitial lung disease in the patient who has connective tissue disease. Clin Chest Med, 25: 549-59.
[191] De Lauretis A, Renzoni EA. 2014. Molecular biomarkers in interstitial lung diseases. Mol Diagn Ther, 18: 505-22.
[192] Denton CP, Khanna D. 2019. Systemic sclerosis. Lancet, 390: 1685-99.
[193] Karami J, Aslani S, Jamshidi A, Garshasbi M, Mahmoudi M. 2019. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene, 702: 8-16.
[194] Blanco Pérez JJ, Arnalich Montiel V, Salgado-Barreira Á, Alvarez Moure MA, Caldera Díaz AC, Melero Gonzalez R, et al. 2020. Prevalence and clinical impact of systemic autoimmune rheumatic disease in patients with silicosis. Arch Bronconeumol (Engl Ed), S0300-2896(20)30129-0.
[195] Long K, Danoff SK. 2019. Interstitial lung disease in polymyositis and dermatomyositis. Clin Chest Med, 40: 561-72.
[196] Elhai M, Hoffmann-Vold AM, Avouac J, Pezet S, Cauvet A, LeblondA, et al. 2019. Performance of candidate serum biomarkers for systemics clerosis-interstitial lung disease. Arthritis Rheumatol, 71: 972-82. http://dx.doi.org/10.1002/art.40815
[197] Yanaba K, Hasegawa M, Takehara K, Sato S. 2004. Comparative study of serum surfactant protein-D and KL-6 concentrations in patients with systemic sclerosis as markers for monitoring the activity of pulmonary fibrosis. J Rheumatol, 31: 1112-20.

Copyright © 2024 Francisco García-Río, Bernardino Alcázar-Navarrete, Diego Castillo-Villegas, Catia Cilloniz, Alberto García-Ortega, Virginia Leiro-Fernández, Irene Lojo-Rodriguez, Alicia Padilla-Galo, Carlos A. Quezada-Loaiza, Jose Antonio Rodriguez-Portal, Manuel Sánchez-de-la-Torre, Oriol Sibila, Miguel A. Martínez-García

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License