Design and construction of automated mechanical ventilation equipment to assist respiratory failure

Journal: Advances in Medicine and Engineering Interdisciplinary Research DOI: 10.32629/ameir.v1i1.1152

Gilberto Carrillo1, Mauricio Gómez2, Jaime Rodas1, Rafael Pimentel1

1. Industrial Design and Manufacturing Innovation Center, Don Bosco University, El Salvador
2. Research and Innovation Institute in Electronics, Don Bosco University, El Salvador

Abstract

This document presents the requirements met for the design, construction and first validation of a mechanical ventilation system to be used in patients with respiratory failure, which in the initial context was due to the COVID-19 pandemic. The design required the use of computer aided drawing software (Computer Aided Design) CAD and the construction required the use of installed capabilities in mechanical, electropneumatic, electronic, biomedical and automation manufacturing of Don Bosco University (El Salvador) institutes and centers. The adjustment, configuration and programming works were in charge of research professors specialized in these disciplines. The elements used for its construction were available in the Salvadoran market, considering the closure of the borders as a government measure in face of the expansion of the pandemic. After the design, manufacture and commissioning stage, measurements of the conditions of the supplied air were made with the help of professionals dedicated to the maintenance of medical equipment and with the approval of internist doctors. The results achieved are those obtained with paramedical equipment and with first aid equipment, for which it has been foreseen that the equipment can be tested in a subsequent instance with the certified medical union.

Keywords

mechanical ventilation; assisted respiration; COVID-19, respiratory insufficiency

References

[1] M. Ciotti, M. Ciccozzi, A. Terrinoni, W.-C. Jiang, C.-B. Wang, and S. Bernardini, "The COVID-19 Pandemic," Critical Reviews in Clinical Laboratory Sciences, vol. 57, no. 6, pp. 365–388, 2020, pMID: 32645276. [Online]. Available: https://doi.org/10.1080/10408363.2020.1783198
[2] S. A. Lone and A. Ahmad, "COVID-19 Pandemic an African Perspective," Emerging Microbes & Infections, vol. 9, no. 1, pp. 1300–1308, 2020, pMID: 32458760. [Online]. Available: https://doi.org/10.1080/22221751.2020.1775132
[3] J. Watkins, "Preventing a COVID-19 Pandemic," BMJ, vol. 368, 2020. [Online]. Available: https://doi.org/10.1136/bmj.m810
[4] M. Mittermaier, P. Pickerodt, F. Kurth, L. B. de Jarcy, A. Uhrig, C. Garcia, F. Machleidt, P. Pergantis, S. Weber, Y. Li, A. Breitbart, F. Bremer, P. Knape, M. Dewey, F. Doellinger, S. Weber-Carstens, A. S. Slutsky, W. M. Kuebler, N. Suttorp, and H. Müller-Redetzky, "Evaluation of PEEP and Prone Positioning in Early COVID-19 ARDS," E Clinical Medicine, vol. 28, p. 100579, 2020. [Online]. Available: https://doi.org/10.1016/j.eclinm.2020.100579
[5] P. d. F. Chambergo Ruiz, "Diseño, simulación y control de un resucitador para respiratoria," 2017. [Online]. Available: https://bit.ly/3IWbTBO
[6] L. Fiorineschi, F. S. Frillici, and F. Rotini, "Challenging COVID-19 with Creativity: Supporting Design Space Exploration for Emergency Ventilators," Applied Sciences, vol. 10, no. 14, 2020. [Online]. Available: https://doi.org/10.3390/app10144955
[7] A. Jumlongkul, "Automated AMBU Ventilator with Negative Pressure Headbox and Transporting Capsule for COVID-19 Patient Transfer," Frontiers in Robotics and AI, vol. 7, p. 221, 2021. [Online]. Available: https://doi.org/10.3389/frobt.2020.621580
[8] F. Pasquevich, A. Patanella, G. Garaventta, and M. Actis, "Respirador mecánico de emergencia," Innovación y Desarrollo Tecnológico y Social, vol. 2, no. 2, pp. 134–166, 2020. [Online]. Available: https://doi.org/10.24215/26838559e020
[9] IUS. (2020) Embajada de Estados Unidos dona a la UDB equipo tecnológico para el impulso de proyectos formativos. Instituciones Salesianas de Educación Superior. [Online]. Available: https://bit.ly/3mmDqCG
[10] O. Heredia, X. Chunga, L. De la Cruz, and M. Zimic, "Diseño y evaluación de un ventilador mecánico," SciELO, 2021. [Online]. Available: https://bit.ly/3dZdWqu
[11] F. Aranda, J. Aliste, F. Altermatt, F. Alvarez, JP Bernucci, A. Bruhn, M. C. Cabrera, E. Carrasco, R. Castillo, R. De la Fuente, R. Díaz, J. I. Egaña, R. González, T. Honorato, H. J. Lacassie, M. López, W. Merino, A. Penna, F. Pizarro, D. Torres, R. Cristián, A. Bruhn, D. Acuña, and T. Regueira, "Recomendaciones para el manejo de pacientes con COVID-19 con indicación terapéutica de ventilación mecánica que eventualmente son conectados a máquinas de anestesia," Revista Chilena de Anestesia, vol. 49, no. 3, 2020. [Online]. Available: https://doi.org/10.25237/revchilanestv49n03.09
[12] G. Tusman, M. Campos, and E. Gogniat, "COVID-19: Cómo transformar un ventilador de no invasiva en unventilador de críticos," Revista Española de Anestesiología y Reanimación, vol. 67, no. 7, pp. 367–373, 2020. [Online]. Available: https://doi.org/10.1016/j.redar.2020.05.002
[13] W. Mazzotti, "Prácticas de enseñanza mediadas por la tecnología. Cómo enseñan los docentes en los foros de discusión de cursos que se desarrollan en modalidad a distancia," Cuadernos de Investigación Educativa, vol. 2, no. 16, pp. 25–45, 2018. [Online]. Available: https://doi.org/10.18861/cied.2009.2.16.2721
[14] F. Gutiérrez Muñoz, "Ventilación mecánica," Acta Médica Peruana, vol. 28, pp. 87–104, 2011. [Online]. Available: https://bit.ly/3mbefTB
[15] B. A. Rozas, J. V. Urra, and J. G. Garzón, "Características de la ventilación mecánica invasiva en COVID-19 para médicos no especialistas," Revista Chilena de Anestesia, vol. 49, no. 4, 2020. [Online]. Available: https://doi.org/10.25237/revchilanestv49n04-06
[16] T. H. Barnes and M. Singer, "Low Cost Devices to Help in COVID-19," Trends in Anaesthesia and Critical Care, vol. 38, pp. 21–23, 2021. [Online]. Available: https://doi.org/10.1016/j.tacc.2021.03.011
[17] H. Kitazawa, N. Hizawa, Y. Nishimura, T. Fujisawa, T. Iwanaga, A. Sano, H. Nagase, H. Matsumoto, T. Horiguchi, S. Konno, and K. Asano, "The Impact of the Covid-19 Pandemic on Asthma Treatment in Japan: Perspectives Based on Doctors' Views," Respiratory Investigation, vol. 59, no. 5, pp. 670–674, 2021. [Online]. Available: https://doi.org/10.1016/j.resinv.2021.06.004
[18] R. Prabhu, J. S. Masia, J. T. Berthel, N. A. Meisel, and T. W. Simpson, "Design and Manufacturability Data on Additively Manufactured Solutions for COVID-19," Data in Brief, vol. 36, p. 107012, 2021. [Online]. Available: https://doi.org/10.1016/j.dib.2021.107012
[19] M. Larriba, D. Rodríguez-Llorente, A. C. nada Barcala, E. Sanz-Santos, P. Gutiérrez-Sánchez, G. P.-M. noz, S. Álvarez-Torrellas, V. I. Águeda, J. A. Delgado, and J. García, "Lab at Home: 3D Printed and Low-cost Experiments for Termal Engineering and Separation Processes in COVID-19 Time," Education for Chemical Engineers, vol. 36, pp. 24–37, 2021. [Online]. Available: https://doi.org/10.1016/j.ece.2021.02.001
[20] TSI. (2021) Certifier Flow Analyzer Plus High Flow Module Kit 4081. TSI Incorporated. [Online]. Available: https://bit.ly/32k6a82
[21] NI. (2021) NI Educational Laboratory Virtual Instrumentation Suite (NI ELVIS). National Instruments. [Online]. Available: https://bit.ly/3spEIAQ
[22] F. Ruza Tarrio, Tratado de cuidados intensivos pediátricos. Capitel Editores, 2002. [Online]. Available: https://bit.ly/3p0DXvH
[23] S. H. Ochoa, M. I. Martínez, and G. E. J. Díaz, "Ventilación mecánica en pacientes con COVID-19 de acuerdo a los fenotipos de gattinoni," Acta Médica Grupo Ángeles, vol. 18, no. 3, pp. 336–340, 2020. [Online]. Available: https://dx.doi.org/10.35366/95421

Copyright © 2023 Gilberto Carrillo, Mauricio Gómez, Jaime Rodas, Rafael Pimentel

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License