Characterization of terpenoids frompseudognaphalium gaudichaudianum (DC)anderb, wira-wira by GC/MS, active principles with possible use in COVID-19 infection prevention

Journal: Advances in Medicine and Engineering Interdisciplinary Research DOI: 10.32629/ameir.v1i1.1146

Grover Castañeta, Aleyda Huayhua-Llusco, Santiago Tarqui, Abel F. Gutiérrez

Chemical Research Institute, School of Pure and Natural Sciences, University of San Andreas(UMSA), La Paz, Bolivia

Abstract

Pseudognaphalium gaudichaudianum (DC.) Anderb., (asteraceae) is a small herbaceous plant that grows in the heights and in mountainous places. Known by the vernacular name "Wira Wira'', it is well reputed in traditional medicine by aymara communities to treat respiratory diseases like cough, common cold, bronchitis, and pneumonia in the highlands of Bolivia. Due of its expectorant properties, P. gaudichaudianum has been proposed as a phytomedicine to prevent infection by COVID-19, in infusions and vaporization. In this study, the terpenoids from its essential oil were characterized by Gas Chromatography Coupled to Mass Spectrometry (GC/MS). The analysis showed the presence of 1 monoterpenoid, 11 sesquiterpenoids, 2 diterpenoids and 4 minor unidentified compounds. The major compounds identified were β- Eudesmene (16.35%), Rosifoliol (15.29%), Guaia 1(10),1 1-diene (15.20%), Guaia 6,9 diene (14.46%), α-Pinene (11.32%) and α-Guaiene (6.16%).

Keywords

α-Pinene, asteraceae, COVID-19, essential oil, terpenoids, wira-wira

References

[1]Freire, S.E., Bayón, N.D., Baeza, C.M., Giuliano, D.A., Monti, C. 2014, Revision of the genus
Pseudognaphalium(Asteraceae, Gnaphalieae) in Chile, Gayana Botánica, 71(1), 68-107. DOI: http://dx.doi.org/10.4067/S0717-66432014000100010
[2] Paz Deble, L., Cardozo Marchiori, J.N. 2006, O gênero Pseudognaphalium Kirp.(Asteraceae-Gnaphalieae) no sul do Brasil, Balduinia, 6, 1-13. DOI: https://doi.org/10.5902/2358198014026
[3] Mendoza, L., Urzúa, A. 1998, Minor flavonoids and diterpenoids in the resinous trichome exudates from Pseudognaphalium cheiranthifolium, P. heterotrichium, P. vira vira and P. robustum, Biochemical Systematics and Ecology, 26(4), 469-471. DOI: https://doi.org/10.1016/S0305-1978(97)00117-8
[4] Mendoza, L., Wilkens, M., Urzúa, A. 1997, Antimicrobial study of the resinous exudates and of diterpenoids and flavonoids isolated from some Chilean Pseudognaphalium (Asteraceae). Journal of Ethnopharmacology, 58(2), 85-88. DOI: https://doi.org/10.1016/S0378-8741(97)00084-6
[5] Urzúa, A., Mendoza, L., Tojo, E., Rial, M.E. 1999, Acylated flavonoids from Pseudognaphalium species, Journal of Natural Products, 62(2), 381-382. DOI: https://doi.org/10.1021/np9804031
[6] Cotoras, M., Garcia,C., Lagos, C., Folch, C., Mendoza, L. 2001, Antifungal activity on Botrytis cinerea of flavonoids and diterpenoids isolated from the surface of Pseudognaphalium spp., Boletín de la Sociedad Chilena de Química, 46(4), 433-440. DOI: http://dx.doi.org/10.4067/S0366-16442001000400007
[7] Cotoras, M., Mendoza, L., Muñoz, A., Yáñez, K., Castro, P., Aguirre, M. 2011, Fungitoxicity against Botrytis cinerea of a flavonoid isolated from Pseudognaphalium robustum, Molecules, 16(5), 3885-3895. DOI: https://doi.org/10.3390/molecules16053885
[8] Aderogba, M.A., McGaw, L.J., Bagla, V.P., Eloff, J.N., Abegaz, B.M. 2014, In vitro antifungal activity of the acetone extract and two isolated compounds from the weed, Pseudognaphalium luteoalbum, South African Journal of Botany, 94, 74-78. DOI: https://doi.org/10.1016/j.sajb.2014.06.003
[9]Rezende, M.C., Urzua, A., Bortoluzzi, A.J.,Vásquez, L. 2000, Variation of the antimicrobial activity of Pseudognaphalium vira vira (Asteraceae): isolation and X-ray structure of ent-3β-hydroxy-16-kauren-19-oic acid, Journal of Ethnopharmacology, 72(3), 459-464. DOI: https://doi.org/10.1016/S0378-8741(00)00239-7
[10]Urzúa, A. 2002, Monoterpenes and sesquiterpenes in the headspace volatiles from intact plants of Pseudognaphalium vira vira, P. heterotrichium, P. cheiranthifolium and P. robustum: their insect repellent function, Bol. Soc. Chil. Quím., 47(2), 99-104. DOI: http://dx.doi.org/10.4067/S0366-16442002000200005
[11] Urzúa, A., Echeverría, J., Santander, R. 2011, Comparative chemical composition of the essential oils from Pseudognaphalium robustum, P. heterotrichiumand P. cheiranthifolium, Journal of Essential Oil Bearing Plants, 14(5), 600-604. DOI: https://doi.org/10.1080/0972060X.2011.10643977
[12]Freire, S.E., Monti, C., Bayón, N., Migoya, M.A. 2018, Taxonomic Studies in Pseudognaphalium Kirp.(Asteraceae, Gnaphalieae) from Peru, Systematic Botany, 43(1), 325-343. DOI: https://doi.org/10.1600/036364418X696914
[13]Monti, C. 2016, Revisión taxonómica y análisis cladísticode las especies sudamericanas del género Pseudognaphalium Kirp. (Asteraceae, Gnaphalieae), (PhD Tesis), Universidad Nacional de La Plata, Buenos Aires, Argentina, recuperado de https://doi.org/10.35537/10915/56369
[14] Bravo, J.A., Vila, J.L., Bonté, F. 2021, Eucalyptol and alpha-pinene, natural products with antiviral activity. Personal anti COVID-19 prevention method based on essential oils; nasal, oral and manual aqueous cleaning [3xal]. Coronavirus: environmental disinfection by Eucalyptus, Revista Boliviana de Química, 38(2), 95-103. DOI: https://doi.org/10.34098/2078-3949.38.2.4
[15] Beale, J.M. Block, J.H., Antiviral Agents. In: Organic Medicinal and Pharmaceutical Chemistry, 12th ed., ed by Beale, J.M., Block, J.H., 2011, Lippincott Williams & Wilkins, Philadelphia, USA, 330-354.
[16] Elsevier Connect. 2019, Inmunidad contra los virus y sus mecanismos de evasión, https://www.elsevier.com/es- es/connect/medicina/inmunidad-contra-los-virus-y-sus-mecanismos-de-evasion, Access date: 12/02/2022
[17]Galán-Sánchez, F., Fernández-Gutiérrez del Álamo, C., Rodríguez-Iglesias, M. 2014, Infecciones víricas, Medicine - Programa de Formación Médica Continuada Acreditado, 11(49), 2885–2892. DOI: https://doi.org/10.1016/S0304-5412(14)70711-5
[18] Da Silva, J.K.R., Figueiredo, P.L.B., Byler, K.G., Setzer, W.N. 2020, Essential Oils as Antiviral Agents, Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation, International Journal of Molecular Sciences, 21(10), 3426. DOI: https://doi.org/10.3390/ijms21103426
[19] Caravaca Pérez, P., Moran Fernández., L., García-Cosio, M.D., Delgado, J.F. 2020, Sistema renina-angiotensina- aldosterona y COVID19. Implicaciones clínicas, Revista Española de Cardiología Suplementos, 20(E), 27–32. DOI: https://doi.org/10.1016/S1131-3587(20)30032-7
[20] Mehta, N., Kalra, A., Nowacki, A. S., Anjewierden, S., Han, Z., Bhat, P., Carmona-Rubio, A.E., Jacob, M., Procop, G.W., Harrington, S., Milinovich, A., Svensson, L.G., Jehi, L., Young, J.B., Chung, M.K. 2020, Association of Use of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Testing Positive for Coronavirus Disease 2019 (COVID-19), JAMA Cardiology, 5(9), 1020-1026. DOI: https://doi.org/10.1001/jamacardio.2020.1855
[21] Asif, M., Saleem, M., Saadullah, M., Yaseen, H.S., Al Zarzour, R. 2020, COVID-19 and therapy with essential oils having antiviral, anti-inflammatory, and immunomodulatory properties, Inflammopharmacology, 28(5), 1153–1161. DOI: https://doi.org/10.1007/s10787-020-00744-0
[22] My, T.T.A., Loan, H.T.P., Hai, N.T.T., Hieu, L.T., Hoa, T.T., Thuy, B.T.P., Quang, D.T., Triet, Anh, T.T. Van, Dieu, N.T.X., Trung, N.T., Hue, N. Van, Tat, P. Van, Tung, V. T., Nhung, N.T.A. 2020, Evaluation of the Inhibitory Activities of COVID‐19 of Melaleuca cajuputi Oil Using Docking Simulation, Chemistry Select, 5(21), 6312–6320. DOI: https://doi.org/10.1002/slct.202000822
[23] Kulkarni, S.A., Nagarajan, S.K., Ramesh, V., Palaniyandi, V., Selvam, S.P., Madhavan, T. 2020, Computational evaluation of major components fromplant essentialoilsas potent inhibitors of SARS-CoV-2 spike protein, Journal of Molecular Structure, 1221, 128823. DOI: https://doi.org/10.1016/j.molstruc.2020.128823
[24] Thuy, B.T.P., My, T.T.A., Hai, N.T.T., Hieu, L.T., Hoa, T.T., Thi Phuong Loan, H., Nhung, N.T.A. 2020, Investigation into SARS-CoV-2 resistance of compounds in garlic essential oil, ACS Omega, 5(14), 8312-8320. DOI: https://doi.org/10.1021/acsomega.0c00772
[25] Senthil Kumar, K.J., Gokila Vani, M., Wang, C.S., Chen, C.C., Chen, Y.C., Lu, L.P., Huang, C.H., Lai, C.S., Wang, S.Y. 2020, Geranium and lemon essential oils and their active compounds down regulate angiotensin- convertingenzyme2(ACE2), a SARS-CoV-2 spike Receptor-Binding Domain, in Epithelial Cells, Plants, 9(6), 770. DOI: https://doi.org/10.3390/plants9060770
[26] Ebada, S.S., Al-Jawabri, N.A., Youssef, F.S., El-Kashef, D.H., Knedel, T.O., Albohy, A., Korinek, M., Hwang, T.L., Chen, B.H., Lin, G.H., Lin, C.Y., Aldalaien, S.M., Disi, A.M., Janiak, C., Proksch, P. 2020, Anti-inflammatory, antiallergic and COVID-19 protease inhibitory activities of phytochemicals from the Jordanian hawksbeard: identification, structure–activity relationships, molecular modeling and impact on its folk medicinal uses, RSC advances, 10(62), 38128-38141. DOI: 10.1039/D0RA04876C
[27] Pandey, P., Singhal, D., Khan, F., Arif, M. 2020, Aninsilico screening on Piper nigrum, Syzygium aromaticum
and Zingiber officinale roscoe derived compounds against SARS-CoV-2: A drug repurposing approach, Biointerface Res. Appl. Chem, 11, 11122-11134. DOI: https://doi.org/10.33263/BRIAC114.1112211134
[28]Mohamed, M.E., Tawfeek, N., Elbaramawi, S.S., Fikry, E. 2022, Agathis robusta Bark Essential Oil Effectiveness against COVID-19: Chemical Composition, In Silico and In Vitro Approaches, Plants, 11(5), 663. DOI: https://doi.org/10.3390/plants11050663
[29] Patne, T., Mahore, J., Tokmurke, P. 2020, Inhalation of essential oils: could be adjuvant therapeutic strategy for COVID-19, Int J Pharm Sci Res,11(9), 4095-4103. DOI: https://doi.org/10.1007%2Fs10787-020-00744-0
[30] Tshibangu, D.S., Matondo, A., Lengbiye, E.M., Inkoto, C.L., Ngoyi, E M., Kabengele, C.N., Bongo, G.N., Benjamin Z. Gbolo, B.Z., Kilembe, J.T., Mwanangombo, D.T., Mbadiko, C.M., Mihigo, S.O., Tshilanda, D.D., Ngbolua, K.T.N., Mpiana, P.T. 2020, Possible effect of aromatic plants and essential oils against COVID-19: Review of their antiviral activity, Journal of Complementary and Alternative Medical Research, 11(1), 10-22. DOI: 10.9734/JOCAMR/2020/v11i130175
[31]Maldonado, C., Paniagua-Zambrana, N., Bussmann, R. W., Zenteno-Ruiz, F.S., Fuentes, A.F. 2020, La importancia de las plantas medicinales, su taxonomía y la búsqueda de lacura a la enfermedad que causa el coronavirus (COVID-19), Ecología en Bolivia, 55(1), 1-5.
[32] Bravo, J.A., Vila, J.L., Bonté, F. 2021, Updates on coronavirus, covid-19, personal antiviral prevention method based on natural products, essential oils, eucalyptol, alpha-pinene: Mentisan®; nasal, oral and environmental disinfection by eucalyptus. No more deaths, Revista Boliviana de Química, 38(1), 1-13. DOI: 10.34098/2078-3949.38.1.1
[33] Bravo, J.A. 2020, Coronavirus, COVID-19, preventing the spreading of viruses is easier than we think; biosafety protocols, guide for the reopening of the country and for reducing the risk of reactivation of the spreading, Revista Boliviana de Química, 37(2), 94-131. DOI: 10.34098/2078-3949.37.2.4

Copyright © 2023 Grover Castañeta, Aleyda Huayhua-Llusco, Santiago Tarqui, Abel F. Gutiérrez

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License